Drug discovery is an onerous, extremely expensive, and time-consuming process. Instead, drug repurposing is an attractive strategy for exploiting novel indications for a drug beyond its original use. The untapped potential of drug repurposing compensates the barriers associated with the drug discovery pipeline. Psoriasis is an autoimmune skin disease, where hyperproliferation of keratinocytes and exaggerated immune responses are the important hallmarks of the disease. Extensive in vitro and preclinical research has demonstrated that niclosamide was found to exert potent anticancer and anti-inflammatory properties by targeting STAT3, p65 NF-κB, and NFATc-1 signaling paradigm with minimal host toxicity. From the disease perspective, the static intracellular molecular network in both cancer and psoriasis share overlapping pathological features in terms of hyperproliferation and chronic inflammation, which is mediated by the aforementioned signaling cascade. The plausible mechanistic relevance has prompted us to investigate the implementation of niclosamide for repositioning in psoriasis. Our in vitro and in vivo findings suggest that niclosamide inhibits keratinocytes hyperproliferation by reactive oxygen species-mediated apoptosis through the loss of mitochondrial membrane potential, cell cycle arrest at Sub G1 phase, and DNA fragmentation. Furthermore, niclosamide treatment resulted in abrogation of lipopolysaccharide-induced inflammatory cytokine levels in murine macrophages. Additionally, our results provided a preclinical rationale in imiquimod (IMQ)-induced BALB/c mouse model, where niclosamide diligently mitigated the IMQ-induced epidermal hyperplasia and inflammation by downregulating STAT3, p65 NF-κB, and NFATc-1 transcription factors along with Akt, Ki-67, and ICAM-1 protein expression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.29413DOI Listing

Publication Analysis

Top Keywords

drug discovery
8
drug repurposing
8
stat3 p65
8
p65 nf-κb
8
nf-κb nfatc-1
8
niclosamide
6
drug
5
repurposing drug
4
drug niclosamide
4
niclosamide psoriasis-like
4

Similar Publications

Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement.

View Article and Find Full Text PDF

In the search for novel natural products with hepatoprotective effects against acetaminophen-induced acute liver injury, the marine-derived fungus WHUF0198 was investigated. Seventeen undescribed pyranopyridone alkaloids, aculeapyridones A-Q (-), were isolated by bioactivity-guided fractionation of an extract obtained by coculture of the WHUF0198 with the mangrove-associated fungus sp. DM27.

View Article and Find Full Text PDF

Oral Microalgae-Based Biosystem to Enhance Irreversible Electroporation Immunotherapy in Hepatocellular Carcinoma.

Adv Sci (Weinh)

January 2025

Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.

Irreversible electroporation (IRE) is a novel local tumor ablation technique that can potentially stimulate immune responses. However, IRE alone cannot effectively activate the immune system or prevent distant metastases. Therefore, this study utilized the biocompatibility of Chlorella vulgaris (C.

View Article and Find Full Text PDF

Leveraging Network Target Theory for Efficient Prediction of Drug-Disease Interactions: A Transfer Learning Approach.

Adv Sci (Weinh)

January 2025

Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China.

Efficient virtual screening methods can expedite drug discovery and facilitate the development of innovative therapeutics. This study presents a novel transfer learning model based on network target theory, integrating deep learning techniques with diverse biological molecular networks to predict drug-disease interactions. By incorporating network techniques that leverage vast existing knowledge, the approach enables the extraction of more precise and informative drug features, resulting in the identification of 88,161 drug-disease interactions involving 7,940 drugs and 2,986 diseases.

View Article and Find Full Text PDF

Organoids are three-dimensional (3D) cell cultures derived from human pluripotent stem cells or adult stem cells that recapitulate the cellular heterogeneity, structure, and function of human organs. These microstructures are invaluable for biomedical research due to their ability to closely mimic the complexity of native tissues while retaining human genetic material. This fidelity to native organ systems positions organoids as a powerful tool for advancing our understanding of human biology and for enhancing preclinical drug testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!