As a representative in-plane anisotropic two-dimensional (2D) material, germanium monoselenide (GeSe) has attracted considerable attention recently due to its various in-plane anisotropic material properties originating from the low symmetry of a puckered honeycomb structure. Although there have been plenty of reports on the in-plane anisotropic vibrational, electrical and optical properties of GeSe, the strain effect on those appealing anisotropies is still under exploration. Here we report a systematic first-principles computational investigation of strain-engineering of the anisotropic electronic properties of GeSe monolayers. We found that the anisotropic ratio of the effective mass and mobility of charge carriers (electrons and holes) of GeSe along two principle axes can be controlled by using simple strain conditions. Notably, the preferred conducting direction of GeSe can be even rotated by 90° under an appropriate uniaxial strain (>5%). Such effective strain modulation of the electronic anisotropy of GeSe monolayers provides them abundant opportunities for future mechanical-electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp05058bDOI Listing

Publication Analysis

Top Keywords

gese monolayers
12
in-plane anisotropic
12
anisotropy gese
8
properties gese
8
gese
7
anisotropic
5
strain-engineering in-plane
4
in-plane electrical
4
electrical anisotropy
4
monolayers representative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!