Prediction of Core Signaling Pathway by Using Diffusion- and Perfusion-based MRI Radiomics and Next-generation Sequencing in Isocitrate Dehydrogenase Wild-type Glioblastoma.

Radiology

From the Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K., Y.J.), Department of Clinical Epidemiology and Biostatistics (S.Y.P.), Department of Pathology (S.J.N., S.M.C.), and Department of Neurosurgery (J.H.K.), University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul 05505, Korea.

Published: February 2020

Background Next-generation sequencing (NGS) enables highly sensitive cancer genomics analysis, but its clinical implications for therapeutic options from imaging-based prediction have been limited. Purpose To predict core signaling pathways in isocitrate dehydrogenase (IDH) wild-type glioblastoma by using diffusion and perfusion MRI radiomics and NGS. Materials and Methods The radiogenomics model was developed by using retrospective patients with glioma who underwent NGS and anatomic, diffusion-, and perfusion-weighted imaging between March 2017 and February 2019. For testing model performance in predicting core signaling pathway, patients with IDH wild-type glioblastoma from a retrospective analysis from a registry ( NCT02619890) were evaluated. Radiogenomic feature selection was performed by using tests, least absolute shrinkage and selection operator penalization, and random forest. Combining radiogenomic features, age, and location, the performance of predicting receptor tyrosine kinase (RTK), tumor protein p53 (P53), and retinoblastoma 1 pathways was evaluated by using the area under the receiver operating characteristic curve (AUC). Results There were 120 patients (52 years ± 13 [standard deviation]; 61 women) who were evaluated. Eighty-five patients (51 years ± 13; 43 men) were in the training set and 35 patients with IDH wild-type glioblastoma (56 years ± 12; 19 women) were in the validation set. Radiogenomics model identified 71 features in the RTK, 17 features in P53, and 35 features in the retinoblastoma pathway. The combined model showed better performance than anatomic imaging-based prediction in the RTK ( = .03) and retinoblastoma ( = .03) and perfusion imaging-based prediction in the P53 pathway ( = .04) in the training set. AUC values of the combined model for the prediction of core signaling pathways were 0.88 (95% confidence interval [CI]: 0.74, 1) for RTK, 0.76 (95% CI: 0.59, 0.92) for P53, and 0.81 (95% CI: 0.64, 0.97) for retinoblastoma in the validation set. Conclusion A diffusion- and perfusion-weighted MRI radiomics model can help characterize core signaling pathways and potentially guide targeted therapy for isocitrate dehydrogenase wild-type glioblastoma. © RSNA, 2019

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2019190913DOI Listing

Publication Analysis

Top Keywords

core signaling
20
wild-type glioblastoma
20
mri radiomics
12
isocitrate dehydrogenase
12
imaging-based prediction
12
signaling pathways
12
idh wild-type
12
prediction core
8
signaling pathway
8
next-generation sequencing
8

Similar Publications

Novel nutrition strategies in gastric and esophageal cancer.

Expert Rev Gastroenterol Hepatol

January 2025

Department of Surgery, Trinity St. James's Cancer Institute, Dublin, Ireland.

Introduction: Advances in treatment strategies for gastric and esophageal cancer have led to improved long-term outcomes, however the local and systemic effects of tumor growth, neoadjuvant therapies and surgery, results in specific nutritional challenges. Comprehensive nutritional evaluation and support represents a core component of multidisciplinary holistic care for this patient population.

Areas Covered: This review provides a detailed overview of the nutritional challenges in gastric and esophageal cancer, with a focus on malignant obstruction, preoperative optimization and nutrition in survivorship.

View Article and Find Full Text PDF

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Gold nanorod in silver tetrahedron: Cysteamine mediated synthesis of SERS probes with embedded internal markers for AFP detection.

Anal Chim Acta

February 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:

Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.

Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!