AI Article Synopsis

  • Management of coronary bifurcation lesions poses challenges, and the effectiveness of bioresorbable vascular scaffolds (BVS) and drug-coated balloons (DCB) in these cases is still being explored.
  • A study conducted at six Italian centers collected data from 40 patients who had BVS and DCB procedures, reporting a 100% procedural success rate and minimal complications over an average follow-up of 15.5 months.
  • Results suggest that using BVS and DCB for treating coronary bifurcation lesions is feasible and effective, showing no major adverse cardiovascular events during the follow-up period.

Article Abstract

Background: Despite the improvement in techniques and tools, coronary lesions involving a bifurcation are still challenging and the outcome with drug-eluting stents is not always optimal. The role of bioresorbable vascular scaffolds (BVS) and drug-coated balloons (DCB) in this setting has not been adequately investigated yet.

Results: From the databases of 6 italian centers with high proficiencies in newer technologies, we retrospectively collected all consecutive cases of coronary bifurcations managed or attempted with the implantation of at least one BVS in the main vessel and the use of one DCB in the side branch (SB). Primary study endpoint was the occurrence of major adverse cardiovascular events (MACE) at the longest available follow-up. Fourty patients fulfilled the enrollment criterion, 22.5% had diabetes and 50% an acute coronary syndrome. Average syntax score was 15.04 ± 7.18, all lesions were de novo, and 27 patients (67.5%) had a type 1,1,1 Medina lesion. Twenty-three lesions (57.5%) involved the proximal left anterior-descending artery/first diagonal branch. Only 32.5% of patients underwent an intravascular imaging-guided angioplasty. Average lesion length was 21.4 mm in the main vessel and 11.49 mm in the SB. MV was always predilated and BVS received a postdilation in 100% of the cases. In 42.5% of the cases, the DCB was used during final kissing balloon inflation, and in no cases, a stent/BVS was required in the SB. Procedural success was achieved in 100% of the cases. After an average follow-up of 15.5 (± 11.5) months, we observed no MACE with only one case of target vessel revasularization (2.5%).

Conclusions: Management of coronary bifurcation lesions with the use of newer technologies including BVS and DCB seems feasible and effective at mid-term and long-term clinical follow-up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914751PMC
http://dx.doi.org/10.1186/s43044-019-0033-zDOI Listing

Publication Analysis

Top Keywords

bioresorbable vascular
8
vascular scaffolds
8
drug-coated balloons
8
coronary bifurcation
8
bifurcation lesions
8
newer technologies
8
main vessel
8
100% cases
8
coronary
5
lesions
5

Similar Publications

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Recent Advances in Polyurethane for Artificial Vascular Application.

Polymers (Basel)

December 2024

College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430070, China.

Artificial blood vessels made from polyurethane (PU) have been researched for many years but are not yet in clinical use. The main reason was that the PU materials are prone to degradation after contact with blood and will also cause inflammation after long-term implantation. At present, PU has made progress in biostability and biocompatibility, respectively.

View Article and Find Full Text PDF

A Review of Additive Manufacturing of Biodegradable Fe and Zn Alloys for Medical Implants Using Laser Powder Bed Fusion (LPBF).

Materials (Basel)

December 2024

Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain.

This review explores the advancements in additive manufacturing (AM) of biodegradable iron (Fe) and zinc (Zn) alloys, focusing on their potential for medical implants, particularly in vascular and bone applications. Fe alloys are noted for their superior mechanical properties and biocompatibility but exhibit a slow corrosion rate, limiting their biodegradability. Strategies such as alloying with manganese (Mn) and optimizing microstructure via laser powder bed fusion (LPBF) have been employed to increase Fe's corrosion rate and mechanical performance.

View Article and Find Full Text PDF
Article Synopsis
  • Neointimal coverage and stent apposition are critical for improving percutaneous coronary interventions (PCI), but current algorithms struggle with automating the analysis of diverse stent types and preselecting necessary segments.
  • This study introduces TriVOCTNet, a multi-task deep learning model designed to automate the classification, lumen segmentation, and stent strut segmentation in IVOCT images, all within one efficient network.
  • TriVOCTNet demonstrated impressive accuracy with high classification rates and precise segmentation outputs, indicating its potential for enhancing clinical practices in PCI procedures.
View Article and Find Full Text PDF

Effects of structural design on the mechanical performances of poly-L-lactic acid cardiovascular scaffolds using FEA and in vitro methods.

J Mech Behav Biomed Mater

December 2024

Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Mechanical Design Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Advanced Mechanical Components Design & Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea; Innovative Mechanobio Active Materials Based Medical Device Demonstration Center, Jeonbuk National University, Jeonju 54896, Republic of Korea. Electronic address:

Article Synopsis
  • This study aimed to explore new scaffold geometries for improving the mechanical performance of Poly-L-lactic Acid (PLLA) bioresorbable vascular scaffolds (BVS) using finite element analysis (FEA) and lab experiments.
  • Four different scaffold designs were subjected to simulations and tests, focusing on various mechanical properties like crush resistance and radial strength.
  • The results revealed that Design B outperformed others in key performance metrics, suggesting new PLLA scaffold geometries could enhance their use in cardiovascular applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!