Sperm cryopreservation is a routine method in andrology and IVF laboratory. However, the sperm quality and its fertilizing capacity have been decreased during this process. The purpose of this experiment was to determine the role of myoinositol as a supplement in amelioration of total and progressive sperm motility, DNA fragmentation, total antioxidant capacity (TAC), reactive oxygen species (ROS), and lipid peroxidation after the freezing-thawing process on patients with oligoasthenoteratozoospermia (OAT) syndrome. Semen samples obtained from 40 patients were divided into two aliquots and freezed with simple and 2 mg/mL myoinositol (MYO) supplemented freezing media. All samples were thawed and assessed after one month. Semen parameters were analyzed in terms of the motility by CASA, the level of total ROS by fluorimetry, TAC and MDA by colorimetric assay and finally DNA fragmentation by TUNEL assay. Our results clearly showed that MYO could improve total (37.46 vs. 12.91, p < 0.001) and progressive motility (21.92 vs. 6.49, p < 0.001) in experimental group compared to control group. A higher TAC level was observed in the MYO treated group in comparison to control group (1.11 vs. 0.91, p = 0.05). While MYO supplementation could not be effective on ROS level, it reduced DNA fragmentation of sperm after freeze-thaw process (p = 0.01). Therefore, MYO could be a good supplement for sperm freezing to reduce the detrimental effects of freezing process especially on DNA integrity, which is an important factor in the success of ART, in OAT suffered patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10561-019-09801-7DOI Listing

Publication Analysis

Top Keywords

myoinositol supplement
8
patients oligoasthenoteratozoospermia
8
dna fragmentation
8
supplement improve
4
sperm
4
improve sperm
4
sperm parameters
4
parameters dna
4
dna integrity
4
integrity patients
4

Similar Publications

Background: Supplementing choline and docosahexaenoic acid (DHA) to pregnant gilts modified fetal pig hepatic global DNA methylation induced by gestational malnutrition, suggesting that gene expression and regulation and its associated metabolic pathways are affected in the liver of offspring during growth and development.

Objective: To investigate the effect of maternal supplementation of choline, DHA and their interaction on hepatic mRNA expression, miRNA regulation and metabolic pathways in the fetal pigs born to malnourished mothers.

Methods: The abundance of mRNA and miRNA was profiled in fetal liver from sows with undernutrition supplemented with choline and DHA in a 2 × 2 factorial design.

View Article and Find Full Text PDF

Background And Objectives: Nutrient supplements are commonly used to improve fertility outcomes by women with infertility trying to conceive spontaneously or utilising medically assisted reproduction (MAR). However, despite their widespread use and perceived safety, there is a lack of clear guidance on the efficacy and safety of these supplements for female infertility. The aim of this umbrella review was to identify the best available and most recent evidence on the efficacy and safety of nutrient supplements for female infertility to provide evidence-based guidance for clinicians and reproductive couples.

View Article and Find Full Text PDF

Purpose: Polycystic Ovary Syndrome (PCOS) and Adrenal hyperplasia (CAH) are two pathologic conditions sharing several clinical features (hirsutism, acne, polycystic ovary morphology, metabolic alterations, ovulatory dysfunctions) and especially hyperandrogenism as a common clinical hallmark. Therefore, making a differential diagnosis of the two conditions still remains a great medical challenge.

Methods: In particular, the comparison discussed in this review referred to non-classical form of adrenal hyperplasia (NCAH), which regards the adult population, and the Endocrine Metabolic Syndrome (EMS), following the new set of PCOS diagnostic criteria proposed by the Experts Group on Inositol and Clinical Research, and on PCOS (EGOI-PCOS).

View Article and Find Full Text PDF

Dietary Supplementation with Methylsulfonylmethane and Myo-Inosito Supports Hair Quality and Fecal Microbiome in Poodles.

Animals (Basel)

December 2024

Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

This study aimed to investigate the effects of dietary supplementation with methylsulfonylmethane (MSM) and myo-inositol (MI) on hair quality, fecal microbiota, and metabolome in poodles. Thirty-two adult poodles categorized based on initial body weight and sex were randomly assigned to four groups. These groups (designated the CON, MSM, MI, and MSM + MI groups) received a basal diet, the same diet supplemented with 0.

View Article and Find Full Text PDF

Myo-inositol improves developmental competence and reduces oxidative stress in porcine parthenogenetic embryos.

Front Vet Sci

December 2024

Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea.

Objective: Myo-inositol (Myo-Ins), the most abundant form of inositol, is an antioxidant and plays a crucial role in the development and reproduction of mammals and humans. However, information elucidating the role of Myo-Ins in porcine embryonic development after parthenogenetic activation (PA) is still lacking. Therefore, we investigated the effect of Myo-Ins on porcine embryos and its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!