Identification and fine mapping of a major locus controlling branching in Brassica napus.

Theor Appl Genet

National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China.

Published: March 2020

AI Article Synopsis

  • A candidate gene responsible for controlling branching in rapeseed (Brassica napus) was located on chromosome A09 within a 270-kb region, leading to insights into the genetic factors affecting this important trait.
  • The study focused on a mutant rapeseed variant, known as db1, which exhibited a significantly high branching density, helping researchers identify two major quantitative trait loci (QTLs), qDBA09 and qDBC06.
  • Further analysis showed that qDBA09 is a single recessive gene responsible for between 9.5 and 70.5% of branching variation, and highlighted three potential genes within the QTL that could be involved in regulating this trait.

Article Abstract

A candidate branching-controlling gene for qDBA09 was identified after delimiting a Brassica napus recessive locus within a 270-kb interval on chromosome A09. Although branching is an important trait associated with the adaptation and yield potential of rapeseed (Brassica napus), the genetic mechanisms underlining branching in this crop remain poorly understood. In this study, we characterized a naturally occurring rapeseed mutant, db1, which showed an ultrahigh branching density phenotype. By combining bulked segregant analysis (BSA) and the Brassica 60K SNP BeadChip Array, we identified two major quantitative trait loci (QTLs), qDBA09 and qDBC06, which were subsequently confirmed using the traditional QTL-mapping approach. Analysis of 208 individuals from a BCF population indicated that the qDBA09 locus is a single Mendelian factor and that the dense branching phenotype is controlled by a single recessive gene. Furthermore, QTL analysis confirmed that qDBA09 explained between 9.5 and 70.5% of the variation in branching-related traits. Using 7785 individuals from the BCF population, we mapped qDBA09 to a DNA fragment of approximately 270 kb in length that contained 27 predicted genes, three of which were identified as potentially involved in the control of the dense branching trait. Based on the reported function of these genes, together with sequence comparisons and co-segregation analysis, we identified a potential candidate gene for the qDBA09 locus. The present findings lay the foundations for further in-depth research on the branching mechanisms of B. napus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-019-03506-xDOI Listing

Publication Analysis

Top Keywords

brassica napus
12
gene qdba09
8
branching trait
8
individuals bcf
8
bcf population
8
qdba09 locus
8
dense branching
8
branching
7
qdba09
6
identification fine
4

Similar Publications

Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Against .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.

Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.

View Article and Find Full Text PDF

Previous studies have demonstrated that γ-Aminobutyric acid (GABA) effectively alleviates heavy metal stresses by maintaining the redox balance and reducing the accumulation of reactive oxygen species (ROS). However, little is known about the role of GABA on programmed cell death (PCD) under Cd treatments in plants. The present study investigated the effects of GABA on Cd-induced PCD in two species, oilseed rape (, ), and black mustard (, ).

View Article and Find Full Text PDF

Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.

View Article and Find Full Text PDF

The environmental risk assessment (ERA) of genetically modified (GM) crops in Japan requires collecting data from a comparative study of a GM and non-GM control in an in-country confined field trial (CFT). This in-country CFT requirement is used to address concerns that differences in the local environmental conditions may lead to differences in growth and/or risks of GM crops. However, this requirement for in-country CFT has recently been exempted for certain GM maize and GM cotton traits, and instead CFT data from other countries are used to inform the ERA of these GM events.

View Article and Find Full Text PDF

Plant growth-promoting bacteria (PGPB) are among the most promising alternatives to mineral fertilizers. However, little is known about the effects of applied bacteria on the native microbiota, including the rhizobacterial community, which plays a crucial role in bacteria-plant interactions. Therefore, this study is aimed at assessing the effects of PGPB not only on plants but also, importantly, on the native rhizobacterial community of winter oilseed rape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!