Musical expertise promotes both the perception and the processing of music. The aim of the present study was to analyze if musicians compared to non-musicians already have auditory processing advantages at the neural level. 50 musicians and 50 non-musicians worked on a task to determine the individual auditory difference threshold (individual JND threshold). A passive oddball paradigm followed while the EEG activity was recorded. Frequent standard sounds (528 hertz [Hz]) and rare deviant sounds (individual JND threshold, 535 Hz, and 558 Hz) were presented in the oddball paradigm. The mismatch negativity (MMN) and the P3a were used as indicators of auditory discrimination skills for frequency differences. Musicians had significantly smaller individual JND thresholds than non-musicians, but musicians were not faster than non-musicians. Musicians and non-musicians showed both the MMN and the P3a at the 535 Hz and 558 Hz condition. In the individual JND threshold condition, non-musicians, whose individual JND threshold was at 539.8 Hz (and therefore even above the deviant sound of 535 Hz), predictably showed the MMN and the P3a. Musicians, whose individual JND threshold was at 531.1 Hz (and thus close to the standard sound of 528 Hz), showed no MMN and P3a-although they were behaviorally able to differentiate frequencies individually within their JND threshold range. This may indicate a key role of attention in triggering the MMN during the detection of frequency differences in the individual JND threshold range (see Tervaniemi et al. in Exp Brain 161:1-10, 2005).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-019-05707-8DOI Listing

Publication Analysis

Top Keywords

individual jnd
28
jnd threshold
28
musicians non-musicians
12
mmn p3a
12
musical expertise
8
individual
8
threshold
8
jnd
8
oddball paradigm
8
535 hz 558 hz
8

Similar Publications

Longitudinal Insights Into Childhood Onset Facioscapulohumeral Dystrophy: A 5-Year Natural History Study.

Neurology

January 2025

From the Department of Neurology (J.N.D., H.T.M.B., N.V.A., B.G.M.V.E., N.C.V.); Department of Pediatric Neurology (J.N.D., H.T.M.B., A.K., C.E.E.), Donders Institute for Brain, Cognition and Behaviour, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Neurology (R.J.M.G.), Jönköping, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden; Department of Rehabilitation (M.M.P., S.L.S.H.), Donders Institute for Brain, Cognition and Behaviour, Amalia Children's Hospital; and Department of Neurology (N.V.A.), Clinical Neuromuscular Imaging Group, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.

Article Synopsis
  • FSHD is a genetic muscle disorder that can start in childhood, affecting about 20% of patients early on. Understanding its progression and outcomes is important for care and research.
  • A study followed 20 childhood-onset FSHD patients over 5 years, assessing muscle function and disease severity with various tests. Most participants did not notice changes in their condition, despite measurable progression.
  • Results showed variable disease progression, with improvements in quality of life and decreased fatigue. The study emphasizes the need for more sensitive outcome measures and larger international studies in future pediatric research.
View Article and Find Full Text PDF

Sickle Trait and Alpha Thalassemia Increase NOS-Dependent Vasodilation of Human Arteries Through Disruption of Endothelial Hemoglobin-eNOS Interactions.

Circulation

January 2025

Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD.

Background: Severe malaria is associated with impaired nitric oxide (NO) synthase (NOS)-dependent vasodilation, and reversal of this deficit improves survival in murine models. Malaria might have selected for genetic polymorphisms that increase endothelial NO signaling and now contribute to heterogeneity in vascular function among humans. One protein potentially selected for is alpha globin, which, in mouse models, interacts with endothelial NOS (eNOS) to negatively regulate NO signaling.

View Article and Find Full Text PDF
Article Synopsis
  • * In a Phase II clinical trial, 27 patients received entinostat followed by nivolumab, resulting in an objective response rate of 11% and a median response duration of over 10 months, although the primary endpoint for overall effectiveness was not reached.
  • * The combination treatment led to significant immune profile changes, including increased dendritic cell activity and enhanced inflammatory response, suggesting potential for improving treatment strategies in PDA despite
View Article and Find Full Text PDF

Wearable vibrotactile devices seem now mature for entering the daily lives and practices of more and more users. However, vibrotactile perception can greatly differ between individuals, in terms of psychophysics and physiology, not to mention higher levels (cognitive or affective for example). Broadly-distributed and affordable vibrotactile devices hence must be adapted to each user's own perception, first of all by delivering intensity levels that are in the perceptible range of the user.

View Article and Find Full Text PDF

Background: In patients with coronary artery disease, coronary plaques with high-risk features and low-attenuation plaque burden are independent measures associated with major adverse cardiovascular events (MACEs). Patients with chronic kidney failure may have different coronary artery disease characteristics. The aim was to assess the association of coronary plaque characteristics and coronary artery disease extent with MACE and all-cause mortality in patients with chronic kidney failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!