The enhanced reactivity of a series of four aza aromatic compounds (AACs) participating in the Diels-Alder (DA) reactions with ethylene has been studied using Molecular Electron Density Theory (MEDT). The analysis of the electronic structure of these AACs allows establishing that the substitution of the C-H unity by the isoelectronic N: unity linearly decreases the ring electron density (RED) of these compounds and concomitantly decreases their aromatic character and increases their electrophilic character. These behaviours not only decrease drastically the activation energies of these DA reactions, but also increase the reaction energies when they are compared with the very unfavourable DA reaction between benzene and ethylene. Very good correlations between the NICS(0) values and the electrophilicity ω indices of these AACs with the RED values are found. The present MEDT study makes it possible to establish two empirical electron density unity (EDU) indices accounting for the contribution of the C and N unities, 2.77 and 2.19 e, respectively, for the RED, which is mainly responsible for the reactivity of these AACs. Comprehensive chemical concepts such as electron density, aromaticity and electrophilicity make it possible to explain the chemical reactivity of these AACs participating in DA reactions towards ethylene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9ob02467k | DOI Listing |
Sci Rep
December 2024
Department of Physics, Shahid Beheshti University, Tehran, 1983969411, Iran.
Machine learning interatomic potentials, as a modern generation of classical force fields, take atomic environments as input and predict the corresponding atomic energies and forces. We challenge the commonly accepted assumption that the contribution of an atom can be learned from the short-range local environment of that atom. We employ density functional theory calculations to quantify the decay of the induced electron density and electrostatic potential in response to local perturbations throughout insulating, semiconducting and metallic samples of different dimensionalities.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.
View Article and Find Full Text PDFSci Rep
December 2024
SANKEN (Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
By employing the stabilizer in the supersonic gas nozzle to produce the plasma density profile with a sharp downramp, we have experimentally demonstrated highly stable electron beam acceleration based on the shock injection mechanism in laser wakefield acceleration with the use of a compact Ti:sapphire laser. A quasi-monoenergetic electron beam with a peak energy of 315 MeV ± 12.5 MeV per shot is generated.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute of Materials Science, Technische Universität Darmstadt, Peter-Grünberg-Str. 2, D-64287, Darmstadt, Germany.
The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!