Facioscapulohumeral muscular dystrophy (FSHD) is linked to epigenetic derepression of the germline/embryonic transcription factor DUX4 in skeletal muscle. However, the etiology of muscle pathology is not fully understood, as DUX4 misexpression is not tightly correlated with disease severity. Using a DUX4-inducible cell model, we show that multiple DUX4-induced molecular pathologies that have been observed in patient-derived disease models are mediated by the signaling molecule hyaluronic acid (HA), which accumulates following DUX4 induction. These pathologies include formation of RNA granules, FUS aggregation, DNA damage, caspase activation, and cell death. We also observe previously unidentified pathologies including mislocalization of mitochondria and the DUX4- and HA-binding protein C1QBP. These pathologies are prevented by 4-methylumbelliferone, an inhibitor of HA biosynthesis. Critically, 4-methylumbelliferone does not disrupt DUX4-C1QBP binding and has only a limited effect on DUX4 transcriptional activity, establishing that HA signaling has a central function in pathology and is a target for FSHD therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6905861PMC
http://dx.doi.org/10.1126/sciadv.aaw7099DOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
8
facioscapulohumeral muscular
8
muscular dystrophy
8
identification hyaluronic
4
acid pathway
4
pathway therapeutic
4
therapeutic target
4
target facioscapulohumeral
4
dystrophy facioscapulohumeral
4
dystrophy fshd
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!