The enemy-free space hypothesis (EFSH) contends that generalist predators select for dietary specialization in insect herbivores. At a community level, the EFSH predicts that dietary specialization reduces predation risk, and this pattern has been found in several studies addressing the impact of individual predator taxa or guilds. However, predation at a community level is also subject to combinatorial effects of multiple-predator types, raising the question of how so-called multiple-predator effects relate to dietary specialization in insect herbivores. Here, we test the EFSH with a field experiment quantifying ant predation risk to insect herbivores (caterpillars) with and without the combined predation effects of birds. Assessing a community of 20 caterpillar species, we use model selection in a phylogenetic comparative framework to identify the caterpillar traits that best predict the risk of ant predation. A caterpillar species' abundance, dietary specialization, and behavioral defenses were important predictors of its ant predation risk. Abundant caterpillar species had increased risk of ant predation irrespective of bird predation. Caterpillar species with broad diet breadth and behavioral responsiveness to attack had reduced ant predation risk, but these ant effects only occurred when birds also had access to the caterpillar community. These findings suggest that ant predation of caterpillar species is density- or frequency-dependent, that ants and birds may impose countervailing selection on dietary specialization within the same herbivore community, and that contingent effects of multiple predators may generate behaviorally mediated life-history trade-offs associated with herbivore diet breadth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854387PMC
http://dx.doi.org/10.1002/ece3.5662DOI Listing

Publication Analysis

Top Keywords

ant predation
28
dietary specialization
24
predation risk
20
caterpillar species
16
insect herbivores
12
risk ant
12
predation caterpillar
12
predation
11
ant
8
caterpillar
8

Similar Publications

Multiple mechanisms of action for an extremely painful venom.

Curr Biol

December 2024

Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA. Electronic address:

Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream.

View Article and Find Full Text PDF

Central-place foragers face high predation risk when repeatedly using routes near their nest, as predators can learn to ambush them there. We investigated the factors influencing the likelihood of desert ant foragers falling into pitfall traps, simulating common predators such as antlions or spiders. We varied the spatial configuration of the pitfall traps, the presence of trapped nestmates and the availability of visual landmarks to study the workers' susceptibility to falling into pits and their foraging success.

View Article and Find Full Text PDF

Global change drivers such as habitat fragmentation, species invasion, and climate warming can act synergistically upon native systems; however, global change drivers can be neutralized if they induce antagonistic interactions in ecological communities. Deadwood comprises a considerable portion of forest carbon, and it functions as refuge, nesting habitat and nutrient source for plant, animal and microbial communities. We predicted that thermophilic termites would increase wood decomposition with experimental warming and in forest edge habitat.

View Article and Find Full Text PDF

Adaptive trade-offs between vertebrate defence and insect predation drive Amazonian ant venom evolution.

Proc Biol Sci

November 2024

INRAE, UMR Ecologie des forêts de Guyane - EcoFoG (AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex 97379, France.

Stinging ants have diversified into various ecological niches, and selective pressures may have contributed to shape the composition of their venom. To explore the drivers underlying venom variation in ants, we sampled 15 South American rainforest species and recorded a range of traits, including ecology, morphology and venom bioactivities. Principal component analysis of both morphological and venom bioactivity traits reveals that stinging ants display two functional strategies where species have evolved towards either an exclusively offensive venom or a multi-functional venom.

View Article and Find Full Text PDF

Unexpected Delayed Incursion of Highly Pathogenic Avian Influenza H5N1 (Clade 2.3.4.4b) Into the Antarctic Region.

Influenza Other Respir Viruses

October 2024

Centre for Pathogen Genomics, Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.

The current highly pathogenic avian influenza H5N1 panzootic is having substantial impacts on wild birds and marine mammals. Following major and widespread outbreaks in South America, an incursion to Antarctica occurred late in the austral summer of 2023/2024 and was confined to the region of the Antarctic Peninsula. To infer potential underlying processes, we compiled H5N1 surveillance data from Antarctica and sub-Antarctic Islands prior to the first confirmed cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!