Legumes obtain nitrogen from air through rhizobia residing in root nodules. Some species of rhizobia can colonize cereals but do not fix nitrogen on them. Disabling native regulation can turn on nitrogenase expression, even in the presence of nitrogenous fertilizer and low oxygen, but continuous nitrogenase production confers an energy burden. Here, we engineer inducible nitrogenase activity in two cereal endophytes (Azorhizobium caulinodans ORS571 and Rhizobium sp. IRBG74) and the well-characterized plant epiphyte Pseudomonas protegens Pf-5, a maize seed inoculant. For each organism, different strategies were taken to eliminate ammonium repression and place nitrogenase expression under the control of agriculturally relevant signals, including root exudates, biocontrol agents and phytohormones. We demonstrate that R. sp. IRBG74 can be engineered to result in nitrogenase activity under free-living conditions by transferring a nif cluster from either Rhodobacter sphaeroides or Klebsiella oxytoca. For P. protegens Pf-5, the transfer of an inducible cluster from Pseudomonas stutzeri and Azotobacter vinelandii yields ammonium tolerance and higher oxygen tolerance of nitrogenase activity than that from K. oxytoca. Collectively, the data from the transfer of 12 nif gene clusters between 15 diverse species (including Escherichia coli and 12 rhizobia) help identify the barriers that must be overcome to engineer a bacterium to deliver a high nitrogen flux to a cereal crop.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634771 | PMC |
http://dx.doi.org/10.1038/s41564-019-0631-2 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
In this study, dual-root soybean ( L. Merr.) plants, with one side nodulated and the other nonnodulated, were used as experimental materials.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
Legumes have the capability to form nodules that facilitate symbiotic nitrogen fixation (SNF) with rhizobia. Given the substantial energy consumption during the process of SNF, legumes need to optimize nodule number in response to everchanging environmental scenarios. The TGACG BINDING FACTOR1/4 (TGA1/4) are key players in the basal immune response of plants.
View Article and Find Full Text PDFBiogeochemistry
January 2025
Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
Unlabelled: Nitrogen (N) fixation in association with mosses could be a key source of new N in tropical montane cloud forests since these forests maintain high humidity levels and stable temperatures, both of which are important to N fixation. Here, nutrient availability could be a prominent control of N fixation processes. However, the mechanisms and extent of these controls, particularly in forests at different successional stages, remains unknown to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!