The emergence of classical BSE from atypical/Nor98 scrapie.

Proc Natl Acad Sci U S A

UMR Institut National de la Recherche Agronomique (INRA)/École Nationale Vétérinaire de Toulouse (ENVT) 1225, Interactions Hôtes Agents Pathogènes, 31076 Toulouse, France.

Published: December 2019

Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936354PMC
http://dx.doi.org/10.1073/pnas.1915737116DOI Listing

Publication Analysis

Top Keywords

classical bse
8
atypical/nor98 scrapie
8
prion disease
8
bovine prp
8
prp mice
8
c-bse agent
8
prion seeding
8
seeding activity
8
c-bse prions
8
prion strain
8

Similar Publications

This report presents the results of surveillance on transmissible spongiform encephalopathies in cattle, sheep, goats, cervids and other species, and genotyping in sheep and goats, carried out in 2023 by 27 Member States (MS, EU27), the United Kingdom (in respect of Northern Ireland, (XI)) and other eight non-EU reporting countries: Bosnia and Herzegovina, Iceland, Montenegro, North Macedonia, Norway, Serbia, Switzerland (the data reported by Switzerland include those of Liechtenstein) and Türkiye. In total, 948,165 cattle were tested by EU27 and XI (-3%, compared with 2022), with five atypical BSE cases reported (four H-type: two in Spain, one in France and one in Ireland; one L-type in the Netherlands); and 46,096 cattle by eight non-EU reporting countries with two atypical BSE cases reported by Switzerland. Three additional atypical BSE cases were reported by UK (1), USA (1) and Brazil (1).

View Article and Find Full Text PDF

Bovine spongiform encephalopathy (BSE) is a prion disease in cattle caused by classical-type (C-), L-type (L-), or H-type (H-) BSE prions. While C-BSE prions are zoonotic agents responsible for variant Creutzfeldt-Jakob disease, L- and H-BSE prions are believed not to be connected to human prion diseases. However, L-BSE prions have been shown to transmit to cynomolgus monkeys (Macaca fascicularis), suggesting they may have zoonotic potential.

View Article and Find Full Text PDF

Stochastic Schrödinger equation for hot-carrier dynamics in plasmonic systems.

J Chem Phys

September 2024

Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.

We present a multiscale method coupling the theory of open quantum systems with real-time ab initio treatment of electronic structure to study hot-carrier dynamics in photoexcited plasmonic systems. We combine the Markovian Stochastic Schrödinger equation with an ab initio GW coupled to the Bethe-Salpeter (BSE) equation description of the electronic degrees of freedom, interacting with a metallic nanoparticle modeled classically according to the polarizable continuum model. We apply this methodology to study the effect of relaxation (T1) and pure dephasing (T2) times on the hot-carrier dynamics in a system composed of a quantum portion described at GW/BSE level, i.

View Article and Find Full Text PDF

After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrP) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein.

View Article and Find Full Text PDF

While animal prion diseases are a threat to human health, their zoonotic potential is generally inefficient because of interspecies prion transmission barriers. New animal models are required to provide an understanding of these prion transmission barriers and to assess the zoonotic potential of animal prion diseases. To address this goal, we generated Drosophila transgenic for human or nonhuman primate prion protein (PrP) and determined their susceptibility to known pathogenic prion diseases, namely varient Creutzfeldt-Jakob disease (vCJD) and classical bovine spongiform encephalopathy (BSE), and that with unknown pathogenic potential, namely chronic wasting disease (CWD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!