Wound infections are a significant clinical problem affecting millions of people worldwide. Topically applied antibacterial formulations with longer residence time and controlled antimicrobial release would offer significant benefits for improved prevention and treatment of infected wounds. In this study, we developed collagen mimetic peptide (CMP) tethered vancomycin (Van)-containing liposomes (Lipo) (CMP-Van-Lipo) hybridized to collagen-based hydrogels ('co-gels,' e.g., collagen/fibrin combination hydrogels) for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in vitro and in vivo. Tethering CMP-Van-Lipo nanostructures to co-gels enabled sustained Van release and enhanced in vitro antibacterial effects against MRSA as compared to Van loaded co-gels or Van-Lipo loaded co-gels following multiple fresh bacterial inoculations over a period of 48 h. These results were successfully translated in vivo wherein MRSA infected wounds were effectively treated with CMP-Van-Lipo loaded co-gels for up to 9 days, whereas the activity of Van loaded co-gels and Van-Lipo loaded co-gels were limited to <2 days. Moreover, CMP-Van-Lipo retained in vivo antibacterial activity even after re-inoculation with bacteria; however, Van loaded co-gels and Van-Lipo loaded co-gels allowed significant bacterial growth demonstrating their limited efficacy. Altogether, these results provide proof-of-concept that CMP-Van-Lipo loaded co-gels can be effective topical formulations for preventive treatment of MRSA wound infections. STATEMENT OF SIGNIFICANCE: Current topical antimicrobial formulations (e.g., creams, gels, and ointments) do not control release, leaving antimicrobial concentrations either too high or too low at different time points, and provoking the development of antibacterial resistance and recurrence of wound infections. Here, collagen mimetic peptides (CMPs) were used to stably hybridize vancomycin-containing liposomal nanocarriers (CMP-Van-Lipo) within collagen-fibrin co-gels via triple-helical integration with collagen, enabling control over Van release for prolonged time periods and minimizing the adverse effects of the Lipo formulations on fibroblast cell viability in the wound bed. The CMP-Van-Lipo loaded co-gel's higher antibacterial effects in vitro were successfully translated in vivo for treatment of MRSA-infected mouse wounds, and thus the co-gels can be a potentially translatable treatment for improved clinical wound management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044801 | PMC |
http://dx.doi.org/10.1016/j.actbio.2019.12.014 | DOI Listing |
ACS Appl Bio Mater
June 2020
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716.
Wound healing is a complex biological process that requires coordinated cell proliferation, migration, and extracellular matrix production/remodeling, all of which are inhibited/delayed in chronic wounds. In this study, a formulation was developed that marries a fibrin-based, provisional-like matrix with collagen mimetic peptide (CMP)/PDGF gene-modified collagens, leading to the formation of robust gels that supported temporally controlled PDGF expression and facile application within the wound bed. Analysis employing in vitro co-gel scaffolds confirmed sustained and temporally controlled gene release based on matrix metalloproteinase (MMP) activity, with ~30% higher PDGF expression in MMP producing fibroblasts as-compared with non-MMP-expressing cells.
View Article and Find Full Text PDFActa Biomater
February 2020
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA. Electronic address:
Wound infections are a significant clinical problem affecting millions of people worldwide. Topically applied antibacterial formulations with longer residence time and controlled antimicrobial release would offer significant benefits for improved prevention and treatment of infected wounds. In this study, we developed collagen mimetic peptide (CMP) tethered vancomycin (Van)-containing liposomes (Lipo) (CMP-Van-Lipo) hybridized to collagen-based hydrogels ('co-gels,' e.
View Article and Find Full Text PDFAnn Biomed Eng
October 2012
Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, USA.
While collagen is recognized as the predominant mechanical component of soft connective tissues, the role of the non-fibrillar matrix (NFM) is less well understood. Even model systems, such as the collagen-agarose co-gel, can exhibit complex behavior, making it difficult to identify relative contributions of specific tissue constituents. In the present study, we developed a two-component microscale model of collagen-agarose tissue analogs and used it to elucidate the interaction between collagen and NFM in uniaxial tension.
View Article and Find Full Text PDFJ Biomed Mater Res A
December 2011
Department of Biomedical Engineering, University of Minnesota, Minnesota, USA.
The mechanical properties of soft tissues depend on the collagen fiber network and the surrounding non-fibrillar matrix. The mechanical role of non-fibrillar material remains poorly understood. Our recent study (Lake and Barocas, Ann Biomed Eng 2011) introduced collagen-agarose co-gels as a simple experimental model system to evaluate the mechanical contribution of non-fibrillar matrix, and evaluated co-gel properties in uniaxial tension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!