A systematic analysis of immune genes and overall survival in cancer patients.

BMC Cancer

Center for Public Health Informatics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China.

Published: December 2019

Background: Overall survival (OS) is a key endpoint measure in the management of patients with cancer. Immunotherapy has become a dominant strategy in cancer therapy. To investigate the relationship between OS and the immune system, we assessed the role of immune genes in OS in 8648 patients across 22 cancer types.

Methods: Gene expression data and clinical information were collected from The Cancer Genome Atlas (TCGA) and cBioPortal. Survival analysis was performed with a Cox proportional hazards regression model.

Results: (1) The number of prognostic genes, prognostic immune genes (PIGs) and the hazard ratio (HR) of PIGs in different cancer types all varied greatly; (2) KEGG pathway enrichment analyses indicated that the prognostic genes of 6 cancer types were significantly enriched in multiple (≥5) immune system-related pathways. Of the PIGs in these 6 cancer types, we screened 48 common PIGs in at least 5 cancer types. Eleven out of the 48 PIGs were found to participate in the T cell receptor (TCR) signaling pathway according to the STRING database. Among these genes, ZAP70, CD3E, CD3G, CD3D, and CD247 were part of the TCR 'signal-triggering module'; (3) High expression of the PIGs involved in the TCR signaling pathway was associated with improved OS in 5 cancer types (breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), head and neck squamous cell carcinoma (HNSC), lung adenocarcinoma (LUAD), and sarcoma (SARC)), but was associated with decreased OS in brain lower-grade glioma (LGG).

Conclusions: The TCR signaling pathway played a distinct role in the OS of these 6 cancer types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915928PMC
http://dx.doi.org/10.1186/s12885-019-6414-6DOI Listing

Publication Analysis

Top Keywords

cancer types
24
immune genes
12
pigs cancer
12
tcr signaling
12
signaling pathway
12
cancer
11
patients cancer
8
prognostic genes
8
squamous cell
8
cell carcinoma
8

Similar Publications

Mesenchymal stem cells (MSCs) are a class of protocells that can differentiate into various cell types and have robust replication and renewal capabilities. MSCs secrete various nutritional factors to regulate the microenvironment of tumor tissues. The mechanism by which they inhibit or promote tumor growth may be closely related to MSC-derived exosomes (MSC-Exo).

View Article and Find Full Text PDF

Establishing a living biobank of pediatric high-grade glioma and ependymoma suitable for cancer pharmacology.

Neuro Oncol

January 2025

Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.

Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.

View Article and Find Full Text PDF

Culture-dependent and -independent studies have provided access to symbiont genes and the functions they play for host sponges. Thus, this work investigates the diversity, presence of genes of pharmacological interest, biological activities and metabolome of the bacteria isolated from the sponges Aplysina caissara and Aplysina fulva collected on the southwestern Atlantic Coast. The genes for Polyketide Synthases types I and II and Nonribosomal Peptide Synthetases were screened in more than 200 bacterial strains obtained, from which around 40% were putatively novel.

View Article and Find Full Text PDF

An RNase III-processed sRNA coordinates sialic acid metabolism of during gut colonization.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.

Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.

View Article and Find Full Text PDF

DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!