The effect of different catalysts on reactive compatibilization of 50/50 polycarbonate (PC)/polymethylmethacrylate (PMMA) blends achieved via transesterification that occurs during compounding in a twin-screw extruder was investigated on a phenomenological (optical and mechanical properties), mesoscopic (phase morphology), and molecular level (PC-graft(g)-PMMA-copolymer formation and polymer molecular weight degradation). Formation of PC-(g)-PMMA-copolymer by transesterification resulting in transparent mono-phase PC/PMMA blends with obviously improved compatibility of the two polymer constituents requires use of a suitable catalyst. As a side-effect, PC-(g)-PMMA-copolymer formation by transesterification is always accompanied by a significant simultaneous decomposition of the molecular weight (M) of the PC. For the first time, a colorless, transparent (mono-phase) PC/PMMA 50/50 blend was achieved by a twin-screw extrusion process that can be easily transferred into industrial scale. To achieve this milestone, 0.05 wt% of a weakly acidic phosphonium salt catalyst had to be applied. As a result of the decrease in M of the PC, the mechanical properties (e.g., tensile strain at break and impact strength) of the obtained blends were significantly deteriorated rather than improved as targeted by the polymer compatibilization; therefore, the produced transparent PC/PMMA blends are considered not yet technically suitable for any industrial applications. Different manufacturing process strategies that do not inherently result in PC degradation as a side effect of PC-graft(g)-PMMA-copolymer formation have to be developed to potentially achieve transparent PC/PMMA blends with a useful balance of properties. Based on the experimental observations of this study, a new mechanism of the transesterification reaction occurring during reactive compounding of PC and PMMA in the presence of the effective catalysts is proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960502 | PMC |
http://dx.doi.org/10.3390/polym11122070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!