Damaged DNA-binding protein 1 (DDB1) recruits nucleotide excision pathway proteins to form the UV-damaged DNA-binding protein complex and is required for DNA repair. DDB1 was reported to participate in apoptosis and chemoresistance regulation in several cancers. However, little is known about the function of DDB1 in pancreatic adenocarcinoma (PDAC). In this study, we reported that DDB1 functions as a tumor-promoting factor in PDAC by regulating cancer cell proliferation, epithelial-mesenchymal transition (EMT) and chemoresistance. Compared to normal pancreatic tissues, PDAC tissues had high expression levels of DDB1, and this high expression was positively correlated with poor prognosis. Furthermore, reductions in cell proliferation and EMT were observed in DDB1-deficient PDAC cell lines. Intriguingly, we also found that abrogation of DDB1 expression increased PDAC cell sensitivity to gemcitabine (GEM). Mechanistically, DDB1 knockdown was associated with an increase in deoxycytidine kinase expression in vivo and in vitro. In summary, our work demonstrated that DDB1 promotes PDAC progression and chemoresistance and may serve as a potential predictive marker and therapeutic target for PDAC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966444PMC
http://dx.doi.org/10.3390/cancers11121998DOI Listing

Publication Analysis

Top Keywords

dna-binding protein
12
progression chemoresistance
8
ddb1
8
cell proliferation
8
high expression
8
pdac cell
8
pdac
7
role damage
4
damage dna-binding
4
protein pancreatic
4

Similar Publications

Cytotoxic DNAs, methylation, histones and histones binding proteins are speculated to induce DNA sensors. Under stressed condition, the antigenic patterns, PAMPs and DAMPs, trigger the hyperactive innate response through DNA, DNA-RNA hybrids, oligonucleotides, histones and mtDNA to initiate cGAMP-STING-IFN I cascade. HSV -1&2, HIV, Varicella- Zoster virus, Polyomavirus, Cytomegalovirus, and KSHV negatively regulate the STING-MAVS-TBK-1/1KKE pathway.

View Article and Find Full Text PDF

CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

January 2025

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

View Article and Find Full Text PDF

Inhibition of DEK restores hematopoietic stem cell function in Fanconi anemia.

J Exp Med

March 2025

Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.

Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs.

View Article and Find Full Text PDF

Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.

View Article and Find Full Text PDF

Sarcopenia is an age-related muscle atrophy syndrome characterized by the loss of muscle strength and mass. Although many agents have been used to treat sarcopenia, there are no successful treatments to date. In this study, we identified Danshensu sodium salt (DSS) as a substantial suppressive agent of muscle atrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!