Purpose: To compare manual and robot-assisted vitreoretinal surgery using a virtual-reality surgical simulator.

Methods: Randomized controlled crossover study. Ten experienced vitreoretinal surgeons and 10 novice ophthalmic surgeons were included. The participants were randomized to start with either manual or robot-assisted surgery. Participants completed a test session consisting of three vitreoretinal modules on the Eyesi virtual-reality simulator. The automated metrics of performance supplied by the Eyesi simulator were used as outcome measures. Primary outcome measures were time with instruments inserted (seconds), instrument movement (mm), and tissue treatment (mm).

Results: Robot-assisted surgery was slower than manual surgery for both novices and vitreoretinal surgeons, 0.24 SD units (P = 0.024) and 0.73 SD units (P < 0.001), respectively. Robot-assisted surgery allowed for greater precision in novices and vitreoretinal surgeons, -0.96 SD units (P < 0.001) and -0.47 SD units (P < 0.001), respectively. Finally, novices using robot-assisted surgery inflicted less tissue damage when compared with that using manual surgery, -0.59 SD units (P = 0.009).

Conclusion: At the cost of time, robot-assisted vitreoretinal surgery seems to improve precision and limit tissue damage compared with that of manual surgery. In particular, the performance of novice surgeons is enhanced with robot-assisted vitreoretinal surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575030PMC
http://dx.doi.org/10.1097/IAE.0000000000002720DOI Listing

Publication Analysis

Top Keywords

robot-assisted vitreoretinal
16
vitreoretinal surgery
16
manual surgery
16
robot-assisted surgery
16
surgery
12
compared manual
12
vitreoretinal surgeons
12
units 0001
12
robot-assisted
8
manual robot-assisted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!