Novel Mitochondrial Translation Optimizer-1 Mutations as a Cause of Hereditary Optic Neuropathy.

J Neuroophthalmol

Department of Ophthalmology and Visual Science (EL, RLL), Yale University School of Medicine, New Haven, Connecticut; Department of Neurology (VE, CDAMM, MH), Columbia University Irving Medical Center, New York, New York; and Department of Neurology (FT, RLL), Yale University School of Medicine, New Haven, Connecticut.

Published: September 2020

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNO.0000000000000858DOI Listing

Publication Analysis

Top Keywords

novel mitochondrial
4
mitochondrial translation
4
translation optimizer-1
4
optimizer-1 mutations
4
mutations hereditary
4
hereditary optic
4
optic neuropathy
4
novel
1
translation
1
optimizer-1
1

Similar Publications

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

Mitochondrial dysfunction-driven AMPK-p53 axis activation underpins the anti-hepatocellular carcinoma effects of sulfane sulfur.

Sci Rep

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.

View Article and Find Full Text PDF

DL-3-n-butylphthalide (NBP) exhibits promising pharmacological efficacy against ischemia-reperfusion injury, but its protective effects may involve many mechanisms that are yet to be fully understood. This study aimed to profile the metabolic alterations induced by NBP during the process of ischemia-reperfusion using spatial metabolomics. Our study found that NBP could significantly reduce the ischemic area and restore physical function by potentially modulating pathways of the citrate cycle, pyruvate metabolism, autophagy, and unsaturated fatty acid biosynthesis.

View Article and Find Full Text PDF

Single-organelle visualization tracking natural glycosaminoglycans within mitochondria-lysosome crosstalk for inflammatory homeostasis.

Int J Biol Macromol

January 2025

School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Glycosaminoglycans (GAGs), as natural products with diverse biological activities, play a significant role in regulating inflammatory homeostasis. Nevertheless, the mechanism underlying their intracellular anti-inflammatory properties remains unclear. Herein, we propose a single-organelle visualization tracking framework, leveraging an advanced fluorescent imaging technology combined with labeling methods to dynamically trace the subcellular regulatory mechanisms of GAGs in eliminating inflammatory markers, such as reactive oxygen species (ROS).

View Article and Find Full Text PDF

Novel factors of cisplatin resistance in epithelial ovarian tumours.

Adv Med Sci

January 2025

Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic. Electronic address:

Ovarian tumours are these days one of the biggest oncogynecological problems. In addition to surgery, the treatment of ovarian cancer includes also chemotherapy in which platinum preparations are one of the most used chemotherapeutic drugs. The principle of antineoplastic effects of cisplatin (cis-diamminedichloroplatinum(II), CDDP) is its binding to the DNA and the formation of adducts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!