Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been widely reported that ultraviolet-B (UV-B) radiation is the main extrinsic etiological agent that causes skin photodamage. UV-B exposure mediated photodamage (photo-aging/photo-carcinogenesis) to human skin is caused due to several physiological events at tissue, cellular and molecular levels that lead to impairment of skin function and integrity. In the present study, we investigated the protective role of Trigonelline (TG) against UV-B induced photo-damage in Human Dermal Fibroblasts (Hs68 cells) and Balb/C mice. We exposed human skin fibroblasts and Balb/C mice to UV-B radiation and evaluated various parameters of cellular damage, including, oxidative stress, cytosolic calcium (Ca) levels, apoptotic and ER-stress marker proteins. We found that UV-B irradiation induced ROS generation lead to the depletion of endoplasmic reticulum (ER) calcium and increased the expression of ER stress protein markers (phosphorylated elf2α, CHOP, ATF4) as well as apoptotic protein markers (Bcl, Bax and caspase-9) in a dose and time dependent manner in Hs68 cells. We then determined the effect of TG treatment on UV-B -induced cell death in Hs68 cells and observed that cells exposed to UV-B radiation and treated with TG had a significantly higher survival rate compared to cells exposed to UV-B radiation alone. TG treatment successfully reduced oxidative stress; restored Ca homeostasis and re-established the ER function and prevented apoptotic cell death process. Our results suggest that TG can be used as a potential therapeutic/cosmeceutic agent in preventing skin photo-damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2019.111720 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!