A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Trigonelline, a naturally occurring alkaloidal agent protects ultraviolet-B (UV-B) irradiation induced apoptotic cell death in human skin fibroblasts via attenuation of oxidative stress, restoration of cellular calcium homeostasis and prevention of endoplasmic reticulum (ER) stress. | LitMetric

It has been widely reported that ultraviolet-B (UV-B) radiation is the main extrinsic etiological agent that causes skin photodamage. UV-B exposure mediated photodamage (photo-aging/photo-carcinogenesis) to human skin is caused due to several physiological events at tissue, cellular and molecular levels that lead to impairment of skin function and integrity. In the present study, we investigated the protective role of Trigonelline (TG) against UV-B induced photo-damage in Human Dermal Fibroblasts (Hs68 cells) and Balb/C mice. We exposed human skin fibroblasts and Balb/C mice to UV-B radiation and evaluated various parameters of cellular damage, including, oxidative stress, cytosolic calcium (Ca) levels, apoptotic and ER-stress marker proteins. We found that UV-B irradiation induced ROS generation lead to the depletion of endoplasmic reticulum (ER) calcium and increased the expression of ER stress protein markers (phosphorylated elf2α, CHOP, ATF4) as well as apoptotic protein markers (Bcl, Bax and caspase-9) in a dose and time dependent manner in Hs68 cells. We then determined the effect of TG treatment on UV-B -induced cell death in Hs68 cells and observed that cells exposed to UV-B radiation and treated with TG had a significantly higher survival rate compared to cells exposed to UV-B radiation alone. TG treatment successfully reduced oxidative stress; restored Ca homeostasis and re-established the ER function and prevented apoptotic cell death process. Our results suggest that TG can be used as a potential therapeutic/cosmeceutic agent in preventing skin photo-damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2019.111720DOI Listing

Publication Analysis

Top Keywords

uv-b radiation
16
cell death
12
human skin
12
oxidative stress
12
hs68 cells
12
uv-b
9
ultraviolet-b uv-b
8
uv-b irradiation
8
irradiation induced
8
apoptotic cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!