As oceans continue to warm under climate change, understanding the differential growth responses of corals is increasingly important. Scleractinian corals exhibit a broad range of life-history strategies, yet few studies have explored interspecific variation in long-term growth rates under a changing climate. Here we studied growth records of two coral species with different growth forms, namely branching Isopora palifera and massive Porites spp. at an offshore reef (Myrmidon Reef) of the central Great Barrier Reef (GBR), Australia. Skeletal growth chronologies were constructed using a combination of X-radiographs, gamma densitometry, and trace element (Sr/Ca) analysis. General additive mixed-effect models (GAMMs) revealed that skeletal density of I. palifera declined linearly and significantly at a rate of 1.2% yr between 2002 and 2012. Calcification was stable between 2002 and 2009, yet declined significantly at a rate of 12% yr between 2009 and 2012 following anomalously high sea surface temperatures (SST). Skeletal density of massive Porites exhibited a significant non-linear response over the 11-year study period (2002-2012) in that density was temporarily reduced during the 2009-2010 anomalously hot years, while linear extension and calcification showed no significant trends. Linear extension, density and calcification rates of I. palifera increased to maximum growth of 26.7-26.9 °C, beyond which they declined. In contrast, calcification and linear extension of Porites exhibited no response to SST, but exhibited a significant linear decline in skeletal density with increasing SST. Our results reveal significant differences in coral growth patterns among coral growth forms, and highlight both the resistant nature of massive Porites and sensitivity of branching I. palifera. Future research should target a broad range of coral taxa within similar environments to provide a community-level response of ocean warming on coral reef communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.135908 | DOI Listing |
PLoS One
January 2025
College of Natural and Computational Sciences, Hawai'i Pacific University, Honolulu, HI, United States of America.
Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.
View Article and Find Full Text PDFGlob Chang Biol
November 2024
Department of Biology, Boston University, Boston, Massachusetts, USA.
Environ Monit Assess
November 2024
Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
Marine Protected Areas (MPAs) are widely used to protect at-risk ecosystems. This study employed a combined method to quantify the protection performance on coral reef habitats, integrating coral morphology and topographic relief in the rugosity index. In the Weizhou Island reef in the northern South China Sea, after six years of protection, the no-take areas (NTAs) hosted a greater live coral cover (11.
View Article and Find Full Text PDFMol Phylogenet Evol
February 2025
College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
Porites corals are vital components of tropical reef ecosystems worldwide, serving as ecosystem engineers and hubs of biodiversity in shallow water coral reefs. Despite their ecological significance and the widespread use of Porites spp. as models for research, the richness and evolutionary relationships of species within the genus remain elusive.
View Article and Find Full Text PDFPLoS One
October 2024
Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, United States of America.
Coral reefs are facing threats from a variety of global change stressors, including ocean warming, acidification, and deoxygenation. It has been hypothesized that growing corals near primary producers such as macroalgae or seagrass may help to ameliorate acidification and deoxygenation stress, however few studies have explored this effect in situ. Here, we investigated differences in coral growth rates across a natural gradient in seawater temperature, pH, and dissolved oxygen (DO) variability in a nearshore seagrass bed on Dongsha Atoll, Taiwan, South China Sea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!