A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of machine learning algorithms for the identification of acute exacerbations in chronic obstructive pulmonary disease. | LitMetric

Comparison of machine learning algorithms for the identification of acute exacerbations in chronic obstructive pulmonary disease.

Comput Methods Programs Biomed

Institute of Electronics, Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, China; University of Chinese Academy of Sciences, Beijing, China. Electronic address:

Published: May 2020

Objectives: Identifying acute exacerbations in chronic obstructive pulmonary disease (AECOPDs) is of utmost importance for reducing the associated mortality and financial burden. In this research, the authors aimed to develop identification models for AECOPDs and to compare the relative performance of different modeling paradigms to find the best model for this task.

Methods: Data were extracted from electronic medical records (EMRs) of patients with chronic obstructive pulmonary disease who admitted to the China-Japan Friendship Hospital between February 2011 and March 2017. Five machine learning algorithms (random forest, support vector machine, logistic regression, K-nearest neighbor and naïve Bayes) were used to develop the AECOPDs identification models. Feature selection was performed to find an optimal feature subset. 10-folds cross-validation was used to find the best hyperparameters for each model. The following metrics:  area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, and negative predictive value were used to evaluate the performance of these models.

Results: A total of 303 EMRs (AECOPDs patients:135; None AECOPDs patients: 168) were included in the study. The SVM model obtained the best performance (sensitivity: 0.80, specificity: 0.83, positive predictive value:0.81, negative predictive value:0.85 and area under the receiver operating characteristic curve: 0.90) after performing feature selection.

Conclusions: Our research confirms that the proposed model based on the support vector machine is a powerful tool to identify AECOPDs patients, and it is promising to provide decision support for clinicians when they are struggling to give a confirmed clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2019.105267DOI Listing

Publication Analysis

Top Keywords

chronic obstructive
12
obstructive pulmonary
12
pulmonary disease
12
machine learning
8
learning algorithms
8
acute exacerbations
8
exacerbations chronic
8
identification models
8
find best
8
support vector
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!