Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Identifying acute exacerbations in chronic obstructive pulmonary disease (AECOPDs) is of utmost importance for reducing the associated mortality and financial burden. In this research, the authors aimed to develop identification models for AECOPDs and to compare the relative performance of different modeling paradigms to find the best model for this task.
Methods: Data were extracted from electronic medical records (EMRs) of patients with chronic obstructive pulmonary disease who admitted to the China-Japan Friendship Hospital between February 2011 and March 2017. Five machine learning algorithms (random forest, support vector machine, logistic regression, K-nearest neighbor and naïve Bayes) were used to develop the AECOPDs identification models. Feature selection was performed to find an optimal feature subset. 10-folds cross-validation was used to find the best hyperparameters for each model. The following metrics: area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, and negative predictive value were used to evaluate the performance of these models.
Results: A total of 303 EMRs (AECOPDs patients:135; None AECOPDs patients: 168) were included in the study. The SVM model obtained the best performance (sensitivity: 0.80, specificity: 0.83, positive predictive value:0.81, negative predictive value:0.85 and area under the receiver operating characteristic curve: 0.90) after performing feature selection.
Conclusions: Our research confirms that the proposed model based on the support vector machine is a powerful tool to identify AECOPDs patients, and it is promising to provide decision support for clinicians when they are struggling to give a confirmed clinical diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2019.105267 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!