In the field of upper-limb myoelectric prosthesis control, the use of statistical and machine learning methods has been long proposed as a means of enabling intuitive grip selection and actuation. Recently, this paradigm has found its way toward commercial adoption. Machine learning-based prosthesis control typically relies on the use of a large number of electrodes. Here, we propose an end-to-end strategy for multi-grip, classification-based prosthesis control using only two sensors, comprising electromyography (EMG) electrodes and inertial measurement units (IMUs). We emphasize the importance of accurately estimating posterior class probabilities and rejecting predictions made with low confidence, so as to minimize the rate of unintended prosthesis activations. To that end, we propose a confidence-based error rejection strategy using grip-specific thresholds. We evaluate the efficacy of the proposed system with real-time pick and place experiments using a commercial multi-articulated prosthetic hand and involving 12 able-bodied and two transradial (i.e., below-elbow) amputee participants. Results promise the potential for deploying intuitive, classification-based multi-grip control in existing upper-limb prosthetic systems subject to small modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2019.2959243DOI Listing

Publication Analysis

Top Keywords

prosthesis control
16
multi-grip classification-based
8
classification-based prosthesis
8
prosthesis
5
control
5
control emg-imu
4
emg-imu sensors
4
sensors field
4
field upper-limb
4
upper-limb myoelectric
4

Similar Publications

Aims: To compare the accuracy of marginal fit of CAD-CAM endocrown with two different preparation forms, i.e., endocrown with ferrule and endocrown without ferrule.

View Article and Find Full Text PDF

Aseptic loosening (AL) of artificial hip joints is the most common complication following hip replacement surgery. A total of eight patients diagnosed with AL following total hip arthroplasty (THA) undergoing total hip replacement and eight control patients diagnosed with avascular necrosis of femoral head (ANFH) or femoral neck fracture undergoing THA were enrolled. The samples of the AL group were from synovial tissue surrounding the lining/head/neck of the prosthesis, and the samples of the control group were from the synovium in the joint cavity.

View Article and Find Full Text PDF

Objective: By comparing the hip arthroplasty parameters planned with the AIHIP three-dimensional simulation surgery system, this study analyzes the accuracy of the new femoral-side "shoulder-to-shoulder" artificial anatomical marker positioning method in femoral-side prosthesis implantation and the prevention of leg length discrepancy in hip arthroplasty.

Methods: A retrospective collection of 47 patients who underwent initial total hip arthroplasty at our hospital from August 2020 to December 2022 and met the inclusion and exclusion criteria was used as the study subjects. The average age was 67.

View Article and Find Full Text PDF

Learning to hear again with alternating cochlear frequency allocations.

Sci Rep

January 2025

Department of ENT/Audiology & School for Mental Health and NeuroScience (MHENS), Maastricht University Medical Centre, Maastricht, The Netherlands.

Traditionally, the place-pitch 'tonotopically' organized auditory neural pathway was considered to be hard-wired. Cochlear implants restore hearing by arbitrarily mapping frequency-amplitude information. This study shows that recipients, after a long period of sound deprivation, preserve a level of auditory plasticity, enabling them to swiftly and concurrently learn speech understanding with two alternating, distinct frequency maps.

View Article and Find Full Text PDF

Predicting prosthetic gait and the effects of induced stiff-knee gait.

PLoS One

January 2025

Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover Medical School, Hannover, Germany.

Prosthetic gait differs considerably from the unimpaired gait. Studying alterations in the gait patterns could help to understand different adaptation mechanisms adopted by these populations. This study investigated the effects of induced stiff-knee gait (SKG) on prosthetic and healthy gait patterns and the capabilities of predictive simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!