We demonstrate fourth-order quantum beat between sunlight and single photons from a quantum dot. With a fast time-resolved detection system, we observed high-visibility quantum beat between the independent photons of different frequencies from the two astronomically separated light sources. The temporal dynamics of the beat oscillation indicate the coherent behavior of the interfering photons, and the raw visibility of two-photon interference shows violation of the classical limit with a frequency mismatch of three-times the line width.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b03512 | DOI Listing |
J Chem Phys
January 2025
School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China.
Two-dimensional electronic spectroscopy (2DES) has high spectral resolution and is a useful tool for studying atomic dynamics. In this paper, we show a smallest unit of electromagnetically induced transparency (EIT) for 2DES, i.e.
View Article and Find Full Text PDFJ Chem Phys
November 2024
College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People's Republic of China.
Vibronic coherence has been studied for years, but direct comparisons between the rich experimental features and theory remain rare. In this work, we investigate the vibronic coherent quantum beat of a four-layer platinum carbonyl cluster [Pt3(CO)6]42- in a solution utilizing femtosecond vis-pump/vis-probe transient absorption spectroscopy. By varying the excitational wavelength, quantum beats coupled to either the electronic ground state or the excited state are selectively prepared.
View Article and Find Full Text PDFNano Lett
November 2024
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
Observation and understanding of fine-structure splitting of bright excitons in lead halide perovskite quantum dots (QDs) are crucial to their emerging applications in quantum light sources and exciton coherence manipulation. Recent studies demonstrate that ensemble-level polarization-resolved transient absorption spectroscopy can reveal the quantum beats arising from the coherence between two fine-structure levels. Here we report the observation of an extra fine-structure quantum coherence hidden in previous studies by using cryo-magnetic quantum beat spectroscopy.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!