Nerve Growth Factor Protects Against Pyrethroid-Induced Endoplasmic Reticulum (ER) Stress in Primary Hippocampal Neurons.

Toxicol Sci

Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey.

Published: March 2020

Neurotrophins are a family of growth factors crucial for growth and survival of neurons in the developing and adult brain. Reduction in neurotrophin levels is associated with reduced neurogenesis and cognitive deficits in rodents. Recently, we demonstrated that long-term exposure to low levels of the pyrethroid pesticide deltamethrin causes hippocampal endoplasmic reticulum (ER) stress and learning deficits in mice. Here, we found that nerve growth factor (NGF) mRNA and protein were selectively reduced in the hippocampus of deltamethrin-treated mice. To explore potential mechanisms responsible for this observation, we employed mouse primary hippocampal neurons. Exposure of neurons to deltamethrin (1-5 μM) caused ER stress as indicated by increased levels of C/EBP-homologous protein (CHOP) and glucose-regulated protein 78 (GRP78). These changes were accompanied by increased levels of caspase-12, activated caspase-3, and decreased levels of NGF. Inhibition of ER stress with the eukaryotic initiation factor 2 alpha (eIF2α) inhibitor salubrinal abolished deltamethrin-induced activation of caspase-12 and caspase-3, and restored NGF levels. Furthermore, deltamethrin decreased Akt (protein kinase B) phosphorylation, which was significantly prevented by co-treatment with NGF or SC-79 in cells. Collectively, these results demonstrate that the loss of NGF following ER stress may contribute to deltamethrin-induced apoptosis in the hippocampus through the Akt signaling pathway, and that this may provide a plausible mechanism for impaired learning and memory observed following exposure of mice to deltamethrin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043229PMC
http://dx.doi.org/10.1093/toxsci/kfz239DOI Listing

Publication Analysis

Top Keywords

nerve growth
8
growth factor
8
endoplasmic reticulum
8
reticulum stress
8
primary hippocampal
8
hippocampal neurons
8
increased levels
8
levels
6
stress
5
ngf
5

Similar Publications

Sensitivity to ocular irritation varies among individuals, being influenced by clinical, subjective, and biochemical factors. This study aimed to evaluate individual variability in ocular irritation sensitivity, focusing on clinical parameters, pain perception, and tear neuromediator profiles. Sixty female participants aged 20-40 were classified into high-sensitivity and low-sensitivity groups based on their response to an irritant (Tween20).

View Article and Find Full Text PDF

Kenny-Caffey Syndrome Type 2 (KCS2): A New Case Report and Patient Follow-Up Optimization.

J Clin Med

December 2024

Division of Endocrinology, Diabetes and Metabolism, ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.

Kenny-Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. : The case of a boy is reported, presenting with the characteristic and newly identified clinical, biochemical, radiological, and genetic abnormalities of KCS2. : The proband had noticeable dysmorphic features, and the closure of the anterior fontanel was delayed until the age of 4 years.

View Article and Find Full Text PDF

Background: Plexiform neurofibromas (PNs) are histologically benign peripheral nerve sheath tumors associated with neurofibromatosis type 1 (NF1) and often lead to significant morbidity due to growth. Management includes watchful waiting, surgery for partial debulking, and, since recently, systemic treatment with MEK inhibitors. However, due to the scarcity of natural history studies, our understanding of the natural progression of PNs to guide clinicians in deciding in whom and when to intervene is scarce.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Stem Cell-Based Therapies for Glaucoma Treatment: A Review Bridging the Gap in Veterinary Patients.

Int J Mol Sci

December 2024

Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal.

Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!