Effects of carbon sources on 17 beta-estradiol degradation by Sphingomonas sp. and the analysis of the involved intracellular metabolomics.

Environ Sci Process Impacts

Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, China.

Published: January 2020

17β-estradiol (E2) ubiquitously exists in various water bodies with long-term endocrine-disrupting and carcinogenic impacts on wildlife even at the trace level of ng L. However, it remains unclear how easy-to-degrade carbon sources alter E2 biodegradation patterns. In this study, E2 biodegradation by Sphingomonas sp. MCCC 1A06484 was investigated with regard to alternative carbon sources. Results showed that the bacterium preferentially utilized glucose, sodium succinate and sodium acetate over E2. Interestingly, the presence of these preferred nutrients increased the E2 removal efficiency by 20.1%. Furthermore, a positive relation (p < 0.05) between the utilization of total organic carbon (TOC) and E2 was found. Using intracellular metabolomics by UHPLC-QTOF-MS, 11 up-regulated and 35 down-regulated metabolites (variable importance > 1, p < 0.05) were identified in the bacterium when cultivated with E2 under various carbon and nitrogen backgrounds. The E2 exposure contributed to metabolism changes of lipid, nucleotide, carbohydrate, amino acid and membrane transport, which were considered to play roles in the E2 metabolism. The up-regulated phosphatidylcholine might act as an indicator during the bacterial degradation of E2. Generally, this study contributes to an in-depth understanding of E2 biodegradation in complex environments with multiple carbon and nitrogen sources.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9em00438fDOI Listing

Publication Analysis

Top Keywords

carbon sources
12
intracellular metabolomics
8
carbon nitrogen
8
carbon
5
effects carbon
4
sources
4
sources beta-estradiol
4
beta-estradiol degradation
4
degradation sphingomonas
4
sphingomonas analysis
4

Similar Publications

Induction heating for the electrification of catalytic processes.

ChemSusChem

December 2024

ICPEES: Institut de Chimie et Procedes pour l'Energie l'Environnement et la Sante, catalysis and materials, FRANCE.

The increasing availability of electrical energy generated from clean, low-carbon, renewable sources like solar and wind power is paving the way for a more sustainable future. This has resulted in a growing trend in the chemical industry to increase the share of electricity use in chemical processes, particularly catalytic ones. Replacing fossil fuels with electricity can significantly reduce the carbon footprint associated with chemical production.

View Article and Find Full Text PDF

The direct CO2 reduction reaction (CO2RR) from simulated flue gas of various CO2 concentrations could minimize extra energy for pre-concentration processes to highly concentrated CO2 as a feed-stock. We investigate the challenges for CO2RR caused by low CO2 concentrations and provide strategies concerning the impact of the chosen electrocatalyst material and the selection of the electrolyte to attain high CO selectivity. We continuously feed CO2 mixed with N2 (the typical dilutant in flue gas) in various ratios to gas diffusion electrodes in a model flow-through electrolyzer.

View Article and Find Full Text PDF

Hydrogen production from seawater electrolysis.

Chem Commun (Camb)

December 2024

School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China.

The world's energy landscape is undergoing a significant transformation, driven by the urgent need to address the climate issues and growing sustainable energy demand. Hydrogen can be produced from renewable sources and may play a crucial role in the zero-carbon economy, which is regarded as a promising alternative to fossil fuels. Currently, hydrogen production water electrolysis still relies on high-purity water, while seawater electrolysis benefits from the abundance of seawater, which can be particularly beneficial for water-scarce countries, and deep-sea applications, such as floating platforms or islands.

View Article and Find Full Text PDF

The development of supercapacitors is pivotal for sustainable energy storage solutions, necessitating the advancement of innovative electrode materials to supplant fossil-fuel-based energy sources. Zinc oxide (ZnO) is widely studied for use in supercapacitor electrodes because of its beneficial physicochemical properties, including excellent chemical and thermal stability, semiconducting characteristics, low cost, and environmentally friendly nature. In this study, ZnO nanorods were synthesized using a simple hydrothermal method and then combined with various Ni-based layered double hydroxides (LDHs) [NiM'-LDHs (M' = Mn, Co, and Fe)] to improve the electrochemical performance of the ZnO nanorods.

View Article and Find Full Text PDF

Formaldehyde has been used as a solvent and a source of carbon to insert a methylene group for bridging two imidazo[1,5-]pyridine molecules without using any metal catalysis. This strategy has been extended on other alkyl-, aryl-, and heteroaryl aldehydes as well. This C(sp)-C(sp)-H-C(sp) bond forming reaction proceeds via C(sp)H functionalization of imidazo[1,5-]pyridine and was applied on a wide range of substrates offering moderate to good yields of methylene-bridged/inserted bis-imidazo[1,5-]pyridines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!