The overall survival rate of patients with hepatocellular carcinoma (HCC) has remained unchanged over the last several decades. Therefore, novel drugs and therapies are required for HCC treatment. Isoliquiritigenin (ISL), a natural flavonoid predominantly isolated from the traditional Chinese medicine Glycyrrhizae Radix (Licorice), has a high anticancer potential and broad application value in various cancers. Here, we aimed to investigate the anticancer role of ISL in the HCC cell line Hep3B. Functional analysis revealed that ISL inhibited the proliferation of Hep3B cells by causing G1/S cell cycle arrest in vitro. Meanwhile, the inhibitory effect of ISL on proliferation was also observed in vivo. Further analysis revealed that ISL could suppress the migration and metastasis of Hep3B cells in vitro and in vivo. Mechanistic analysis revealed that ISL inhibited cyclin D1 and up-regulated the proteins P21, P27 that negatively regulate the cell cycle. Furthermore, ISL induced apoptosis while inhibiting cell cycle transition. In addition, phosphatidylinositol 3'-kinase/protein kinase B (PI3K/AKT) signal pathway was suppressed by ISL treatment, and the epithelial marker E-cadherin was up-regulated when the mesenchymal markers Vimentin and N-cadherin were down-regulated. In brief, our findings suggest that ISL could be a promising agent for preventing HCC tumorigenesis and metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944659PMC
http://dx.doi.org/10.1042/BSR20192727DOI Listing

Publication Analysis

Top Keywords

hep3b cells
12
analysis revealed
12
revealed isl
12
cell cycle
12
isl
9
migration metastasis
8
metastasis hep3b
8
isl inhibited
8
isoliquiritigenin inhibits
4
inhibits proliferation
4

Similar Publications

Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model.

View Article and Find Full Text PDF

The survival prediction analysis and preliminary study of the biological function of YEATS2 in hepatocellular carcinoma.

Cell Oncol (Dordr)

December 2024

Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.

Purpose: Our study aims to develop and validate a novel molecular marker for the prognosis and diagnosis of hepatocellular carcinoma (HCC) MATERIALS & METHODS: We retrospectively analyzed mRNA expression profile and clinicopathological data of HCC patients fetched from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and The International Cancer Genome Consortium (ICGC) datasets. Univariate Cox regression analysis was performed to collect differentially expressed mRNA (DEmRNAs) from HCC and non-tumor tissues, and YEATS2, a prognostic marker, was identified by further analysis. ROC curve, survival analysis and multivariate Cox regression analysis as well as nomograms were used to evaluate the prognosis of this gene.

View Article and Find Full Text PDF

We aimed to determine the effects of piperine on cell viability, cellular stresses, and apoptosis first, then the relationship of piperine's effects with the c-Jun N-terminal kinase (JNK) signaling pathway, and also the interaction of piperine with sorafenib in hepatocellular carcinoma. Hepatocellular carcinoma (HepG2 and Hep3B) and non-cancerous hepatocyte (AML12) cell lines were used. The cell viability was determined by using MTT assay.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is recognized as a highly malignant tumor. Targeted combination immunotherapy, the initially approved regimen, is compromised by adverse side effects and low response rates during clinical treatment. Traditional Chinese medicine and its derived natural compounds, known for their anticancer effects, offer advantages of low toxicity and cost.

View Article and Find Full Text PDF

Previously undescribed benzophenone rhamnosides, triadenosides A-F (1-6), were isolated from the aerial parts of Triadenum japonicum (Blume) Makino (Hypericaceae), where known compounds including benzophenone rhamnosides (7 and 8), benzophenone C-glucoside (9), flavonols and their glycosides (10-17), and biflavone (18) were also isolated and identified. Detailed spectroscopic analysis revealed that triadenoside A (1) was 2,3',5'-trihydroxy-4,6-dimethoxybenzophenone 2-O-α-L-rhamnopyranoside, while the absolute configuration of the rhamnosyl moiety was confirmed by HPLC analysis. Triadenosides B-E (2-5) were assigned as acetyl derivatives of 1 in their rhamnosyl moieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!