Evidence for water ridges at oil-water interfaces: implications for ion transport.

Soft Matter

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

Published: January 2020

Understanding ion transport across interfaces is of fundamental importance in many processes such as liquid-liquid extraction, phase transfer catalysis, enhanced oil recovery and emulsion stabilisation. However, the factors that control ion transport across interfaces are poorly known due to a lack of knowledge of structural changes at interfaces. We studied here the effects of ionic concentration and external force on the transport of ions across the decane-water interface using classical molecular dynamics simulations. The results show that the evolution of interfacial structures during ion transfer across the interface is controlled by hydrogen bonding and ionic interactions at the interface. We also identified a new mode of ion transfer across the interface at low ionic concentrations, involving a 'water ridge', rather that the classical 'water finger'. In the water ridge mode, hydrogen bonds are not broken due to low ion levels, and the water ridge induces gradual interface deformation. Whereas, at high ionic concentrations, hydrogen bonds are broken by the strong ion electrostatic repulsion, thus inducing the formation of a water finger. We also found that the variation of the Gibbs free energy during ion transfer is directly relevant to the ionic concentration. The water ridge at low ionic concentrations, which displaces more water molecules towards the decane phase, induces less free energy variation than the water finger at high ionic concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm01791gDOI Listing

Publication Analysis

Top Keywords

ionic concentrations
16
ion transport
12
ion transfer
12
water ridge
12
ion
8
transport interfaces
8
ionic concentration
8
transfer interface
8
low ionic
8
hydrogen bonds
8

Similar Publications

Dimethyltryptamine (DMT) and ibogaine elicit membrane effects in HEK cells transiently transfected with the human 5-HT2A receptor.

Brain Res

December 2024

Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark. Electronic address:

Psychedelics show promise in treating psychiatric disorders. Therapeutic effects appear to involve activation of the 5-Hydroxytryptamine 2A receptor (5-HTR), a G protein-coupled receptor (GPCR). Several SNPs of the 5-HTR naturally occur, which are associated with differences in receptor function and altered responsiveness to treatments.

View Article and Find Full Text PDF

Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.

Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.

View Article and Find Full Text PDF

The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.

View Article and Find Full Text PDF

This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity.

View Article and Find Full Text PDF

This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!