Artificial molecular machines synthesized in supramolecular chemistry have attracted great interest over the past decades. DNA origami presents an alternative approach to construct nano-machines by directly designing its thermodynamically stable state by DNA sequences. Here, we construct a molecular device, named NanoMuscle, with mechanically interlocked DNA origami. NanoMuscle's configuration - either extended or contracted - can be controlled by adding specific DNA strands. We monitored NanoMuscle's multistep synthesis with gel electrophoresis, and verified that monomers of the NanoMuscle are interlocked at correct orientation with transmission electron microscopy (TEM). We then validated that NanoMuscle can switch between extended and contracted configuration. By converting binding energy from DNA hybridization and Brownian motion to mechanical movements, NanoMuscle may serve as a novel building block for future mesoscale machinery.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr06314eDOI Listing

Publication Analysis

Top Keywords

dna origami
12
mechanically interlocked
8
interlocked dna
8
extended contracted
8
dna
6
nanomuscle
5
nanomuscle controllable
4
controllable contraction
4
contraction extension
4
extension mechanically
4

Similar Publications

Molecular Origami: Designing Functional Molecules of the Future.

Molecules

January 2025

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Osaka, Japan.

In the field of chemical biology, DNA origami has been actively researched. This technique, which involves folding DNA strands like origami to assemble them into desired shapes, has made it possible to create complex nanometer-sized structures, marking a major breakthrough in nanotechnology. On the other hand, controlling the folding mechanisms and folded structures of proteins or shorter peptides has been challenging.

View Article and Find Full Text PDF

DNA Origami Framework-Based Spatial Nanochip for Circular ssDNA Assembly and Data Storage.

Small

January 2025

Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

A 3D DNA spatial chip (DSC) based on an icosahedral DNA origami framework is introduced to construct customized circular single-stranded DNA (c-ssDNA) for data storage. Within the confined space of the DSC, thirty addressable location sequences extending from the framework edges are available for designing circular paths and directing the assembly of a series of information oligonucleotides for efficient ligation. This strategy is verified by constructing c-ssDNAs from up to 15 fragments to encode two poems (800 and 860 nucleotides).

View Article and Find Full Text PDF

Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.

View Article and Find Full Text PDF

DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.

View Article and Find Full Text PDF

Synthetic ssDNA oligonucleotides hold great potential for various applications, including DNA aptamers, DNA digital data storage, DNA origami, and synthetic genomes. In these contexts, precise control over the synthesis of the ssDNA strands is essential for generating combinatorial sequences with user-defined parameters. Desired features for creating synthetic DNA oligonucleotides include easy manipulation of DNA strands, effective detection of unique DNA sequences, and a straightforward mechanism for strand elongation and termination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!