Metamorphosis is one of the most important physiological processes in insects. It is regulated by a serial of ecdysone cascade genes. Recently, lots of microRNAs (miRNAs) were investigated in insects; however, their function in metamorphosis is largely unknown. In the present study, the dynamics of a small RNA population was investigated by RNA sequencing from the midgut of a lepidopteran pest Spodoptera litura during larval-pupal metamorphosis. A total of 101 miRNAs were identified, and 75 miRNAs were differentially expressed during the metamorphic process. The relationship between these differentially expressed miRNAs and 12 ecdysone cascade genes was analyzed by four classical software programs, and a multiple-to-multiple regulatory network was found to exist between these miRNAs and their targets. Among them, miR-14-3p and its two targets (EcR and E75) were chosen for further validation. MiR-14-3p had higher expression level in the 6th instar larvae as compared with either the prepupae or pupae, which was opposite to that of both EcR and E75, two ecdysone cascade genes. Luciferase reporter assay confirmed that both EcR and E75 were regulated by miR-14-3p. Interestingly, the 3' untranslated regions are nearly identical to each other among different transcript variants of the ecdysone cascade genes, including EcR, USP, E75, E74, E78, E93, Hr3, Hr4, Hr39, Krh1 and Ftzf1. Thus, different transcript variants of one ecdysone cascade gene could be regulated by the same miRNA. The above data suggest that the ecdysone signaling pathway is under the tight control of miRNA. These findings expand our understanding of the mechanism of insect metamorphosis and may also provide a novel possibility for the control of pest insects in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1744-7917.12745 | DOI Listing |
Int J Mol Sci
December 2024
Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China.
20-hydroxyecdysone (20E) signaling plays an important role in regulating insect growth, development, and reproduction. However, the effect of 20E on reproductive diapause and its regulatory mechanisms have not been fully understood. is a new pest in the Inner Mongolia grasslands, and it aestivates in an obligatory reproductive diapause form.
View Article and Find Full Text PDFCurr Biol
December 2024
Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway. Electronic address:
Although molting is a defining feature of the most species-rich animal taxa-the Ecdysozoa, including arthropods, tardigrades, nematodes, and others-its evolutionary background remains enigmatic. In pancrustaceans, such as insects and decapods, molting is regulated by the ecdysteroid (Ecd) hormone and its downstream cascade (Figure 1A, see also the text). However, whether Ecd-dependent molting predates the emergence of the arthropods and represents an ancestral machinery in ecdysozoans remains unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
Insect developmental transitions are precisely coordinated by ecdysone and juvenile hormone (JH). We previously revealed that accumulated H3K27 trimethylation (H3K27me3) at the locus encoding JH signal transducer Hairy is involved in the larval-pupal transition in insects, but the underlying mechanism remains to be fully defined. Here, we show in and that Rpd3-mediated H3K27 deacetylation in the prothoracic gland during the last larval instar promotes ecdysone biosynthesis and the larval-pupal transition by enabling H3K27me3 accumulation at the locus to induce its transcriptional repression.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China. Electronic address:
Silk proteins, as natural macromolecules, have extensive applications in biomaterials and biomedicine. In the silkworm, the expression of silk protein genes is negatively associated with ecdysone during the molt stage, while it is positively correlated with juvenile hormone during the intermolt stage. In our previous study, overexpression of an isoform Z2 of Broad Complex (BmBrC-Z2), an ecdysone early response factor, significantly reduced the expression of silk protein genes.
View Article and Find Full Text PDFGen Comp Endocrinol
September 2024
Colorado State University, Fort Collins, CO 80523, USA; Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA. Electronic address:
Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!