The engineering of crystalline molecular solids through the simultaneous combination of distinctive non-covalent interactions is an important field of research, as it could allow chemist to prepare materials depicting multi-responsive properties. It is in this context that, pushed by a will to expand the chemical space of chalcogen-bonding interactions, a concept is put forward for which chalcogen- and halogen-bonding interactions can be used simultaneously to engineer multicomponent co-crystals. Through the rational design of crystallizable molecules, chalcogenazolo pyridine scaffold (CGP) modules were prepared that, bearing either a halogen-bond acceptor or donor at the 2-position, can interact with suitable complementary molecular modules undergoing formation of supramolecular polymers at the solid state. The recognition reliability of the CGP moiety to form chalcogen-bonded dimers allows the formation of heteromolecular supramolecular polymers through halogen-bonding interactions, as confirmed by single-crystal X-ray diffraction analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201904762DOI Listing

Publication Analysis

Top Keywords

halogen-bonding interactions
12
supramolecular polymers
12
chalcogen- halogen-bonding
8
interactions
5
concurring chalcogen-
4
interactions supramolecular
4
polymers crystal
4
crystal engineering
4
engineering applications
4
applications engineering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!