Research progress on the relationship between lung cancer drug-resistance and microRNAs.

J Cancer

Medical Molecular Diagnostics Key Laboratory of Guangdong & Departments of Biochemistry and Molecular Biology & Departments of Clinical Biochemistry, Guangdong Medical University, 523808, Dongguan, Guangdong, P.R. China.

Published: November 2019

Lung cancer, a malignant tumor with the highest death rate of cancer, seriously endangers human health. And its pathogenesis and mechanism of drug resistance has been partially clarified, especially for the signal pathway of epidermal growth factor receptor (EGFR). The targeting therapy of EGFR signaling pathway in non-small cell lung cancer (NSCLC) has achieved a certain effect, but the two mutation of EGFR and other mechanisms of lung cancer resistance still greatly reduce the therapeutic effect of chemotherapy on it. MicroRNA is an endogenous non coding RNA, which has a regulatory function after transcriptional level. Recent studies on the mechanism of lung cancer resistance have found that a variety of microRNAs are related to the mechanism of lung cancer drug-resistance. They can regulate lung cancer resistance by participating in signal pathways, drug resistance genes and cell apoptosis, thus affecting the sensitivity of cancer cells to drugs. Therefore, microRNAs can be used as a specific target for the treatment of lung cancer and plays a vital role in the early diagnosis, prognosis and treatment of lung cancer. This article reviews the mechanisms of lung cancer resistance and its relationship with microRNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909942PMC
http://dx.doi.org/10.7150/jca.31952DOI Listing

Publication Analysis

Top Keywords

lung cancer
40
cancer resistance
16
cancer
12
lung
10
cancer drug-resistance
8
drug resistance
8
mechanisms lung
8
mechanism lung
8
treatment lung
8
resistance
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!