Protein-protein interactions play a vital role in nearly all cellular functions. Hence, understanding their interaction patterns and three-dimensional structural conformations can provide crucial insights about various biological processes and underlying molecular mechanisms for many disease phenotypes. Cross-linking mass spectrometry (XL-MS) has the unique capability to detect protein-protein interactions at a large scale along with spatial constraints between interaction partners. The inception of MS-cleavable cross-linkers enabled the MS2-MS3 XL-MS acquisition strategy that provides cross-link information from both MS2 and MS3 level. However, the current cross-link search algorithm available for MS2-MS3 strategy follows a "MS2-centric" approach and suffers from a high rate of mis-identified cross-links. We demonstrate the problem using two new quality assessment metrics ["fraction of mis-identifications" (FMI) and "fraction of interprotein cross-links from known interactions" (FKI)]. We then address this problem, by designing a novel "MS3-centric" approach for cross-link identification and implementing it as a search engine named MaXLinker. MaXLinker outperforms the currently popular search engine with a lower mis-identification rate, and higher sensitivity and specificity. Moreover, we performed human proteome-wide cross-linking mass spectrometry using K562 cells. Employing MaXLinker, we identified a comprehensive set of 9319 unique cross-links at 1% false discovery rate, comprising 8051 intraprotein and 1268 interprotein cross-links. Finally, we experimentally validated the quality of a large number of novel interactions identified in our study, providing a conclusive evidence for MaXLinker's robust performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050104 | PMC |
http://dx.doi.org/10.1074/mcp.TIR119.001847 | DOI Listing |
Front Immunol
January 2025
Center for Translational Science, Florida International University, Port Saint Lucie, FL, United States.
Sepsis is a severe and life-threatening medical syndrome that can lead to organ failure and death. Despite advances in medical treatment, current therapies are often inadequate, with high septic mortality rates. Therefore, there is a critical need for reliable prognostic markers to be used in clinical settings to improve the management and outcomes of patients with sepsis.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Ganjiang Chinese Medicine Innovation Center, Nanchang, China.
Gastric cancer is the fifth most common cancer and the fourth leading cause of cancer-related deaths worldwide, accounting for nearly 800,000 fatalities annually. ITGAX (Integrin alpha X) is closely associated with immune cells, such as macrophages and dendritic cells. Its involvement in gastric cancer was identified through an analysis of The Gene Expression Omnibus (GEO) database, which highlighted as one of four key gastric cancer-related genes.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Background: Adenoid hypertrophy is a common disorder of childhood, and has an unclear pathogenesis. At the beginning of the COVID-19 pandemic, there was a significant reduction in the incidence of adenoid hypertrophy in children under long-term home quarantine, providing a rare research model to explore the pathogenesis and treatment targets of adenoidal hypertrophy in children.
Methodology: Before and during the home quarantine period, adenoids that underwent surgery were detected using label-free proteomics.
Heliyon
January 2025
Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Rabies is a serious zoonotic disease caused by the rabies virus (RABV). Despite the successful development of vaccines and efforts made in drug discovery, rabies is incurable. Therefore, development of novel drugs is of interest to the scientific community.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!