Decomplexation of Cu(II)-natural organic matter complex by non-thermal plasma oxidation: Process and mechanisms.

J Hazard Mater

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China. Electronic address:

Published: May 2020

Heavy metals and natural organic matters (NOM) form very stable heavy metal-NOM complexes in aqueous, facilitating the migration of heavy metals and enhancing their potential risks. In this study, non-thermal plasma oxidation was attempted to destroy the heavy metal-NOM complexes, with Cu-humate (Cu-HA) as a model. The decomplexation efficiency reached 86.1 % within 50 min of plasma oxidation at 16 kV. The generated reactive species by the non-thermal plasma, including O, O, OH, attacked the carboxyl and hydroxyl functional groups of HA, leading to cleavage of the Cu-O bonds, decomplexation of Cu-HA, and release of free Cu(II). Meanwhile, a variety of small molecular intermediates, including phenols, benzoic acids, esters, amines, ketones, acetic acid, formic acid, and oxalic acid, were generated due to attack by the oxidative species on the aromatic moiety and double bonds in Cu-HA. As a consequence of decomplexation, the residual toxicity of Cu-HA to Scenedesmus obliquus was distinctly reduced. This study provides a potential technique to decomplex heavy metal-NOM complexes, and reduces their toxicity to typical Scenedesmus obliquus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.121828DOI Listing

Publication Analysis

Top Keywords

non-thermal plasma
12
plasma oxidation
12
heavy metal-nom
12
metal-nom complexes
12
heavy metals
8
scenedesmus obliquus
8
heavy
5
decomplexation
4
decomplexation cuii-natural
4
cuii-natural organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!