Tadmor et al.'s 2009 article shows experiments of pendant drops with ∼30% higher retention forces than their sessile analogues. A recent article (de la Madrid, R. et al. , , 2871) seemingly explains this result theoretically using a drastically different experimental system that shows a ∼3% higher force that exceeds the scatter in three out of four data points. The differences between the two experimental systems might have allowed the two theories to coexist, but Tadmor's theory, which can explain both, allows an understanding of the solid-liquid interaction, which the newer theory lacks.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b02660DOI Listing

Publication Analysis

Top Keywords

retention forces
8
forces sessile
8
comment "comparison
4
"comparison lateral
4
lateral retention
4
sessile pendant
4
pendant inverted
4
inverted sessile
4
sessile drops"
4
drops" tadmor
4

Similar Publications

The Origin(s) of LUCA: Computer Simulation of a New Theory.

Life (Basel)

January 2025

Center for Complex Decision Analysis, Fudan University, Shanghai 200433, China.

Carl Woese's thesis of cellular evolution emphasized that the last universal common/cellular ancestor (LUCA) must have evolved by drawing from "global inventions". Yet, existing theories regarding the origin(s) of LUCA have mostly centered upon scenarios that LUCA had evolved mostly independently. In an earlier paper, we advanced a new theory regarding the origin(s) of LUCA that extends Woese's original insights.

View Article and Find Full Text PDF

Introduction: Various factors and motivations linked to higher education dynamics can impact professional training, academic involvement, student well-being, and dropout. Knowledge of these factors enables the adoption of more appropriate strategies to promote student retention.

Objective: Identification of potential motivations for dropping out of university and the relationship with symptoms of depression, anxiety and stress among undergraduate nursing students.

View Article and Find Full Text PDF

This current study focusses on the investigation of the self-healing abilities of metallopolymers containing different kinds of metal complexes, which were processed by direct digital light processing (DLP) based three-dimensional (3D) printing. For this purpose, 2‑phenoxyethyl acrylate is mixed with ligand-containing monomers either based on triphenylmethyl(trt)-histidine or terpyridine, respectively. Either zinc(II) or nickel(II) salts are successfully applied for a complexation of the ligand monomers in solution and, subsequently, photopolymerization is performed.

View Article and Find Full Text PDF

Underlying Mechanisms of Chromatographic H/D, H/F, and Isomerism Effects in GC-MS.

Metabolites

January 2025

Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany.

Charge-free gaseous molecules labeled with deuterium H (D) atoms elute earlier than their protium-analogs H (H) from most stationary GC phases. This effect is known as the chromatographic H/D isotope effect (IE) and can be calculated by dividing the retention times () of the protiated ( ) to those of the deuterated () analytes: IE = /. Analytes labeled with C, N or O have almost identical retention times and lack a chromatographic isotope effect.

View Article and Find Full Text PDF

The early treatment of Osteonecrosis of Femoral Head (ONFH) remains a clinical challenge. Conventional Bone Marrow Mesenchymal Stem Cell (BMSC) injection methods often result in unsatisfactory outcomes due to mechanical cell damage, low cell survival and retention rates, inadequate cell matrix accumulation, and poor intercellular interaction. In this study, we employed a novel cell carrier material termed "3D Microscaffold" to deliver BMSCs, addressing these issues and enhancing the therapeutic effects of cell therapy for ONFH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!