A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epigallocatechin-3-Gallate (EGCG) Improves Cognitive Deficits Aggravated by an Obesogenic Diet Through Modulation of Unfolded Protein Response in APPswe/PS1dE9 Mice. | LitMetric

AI Article Synopsis

  • EGCG, a compound in green tea, was studied for its neuroprotective effects in a mixed model of Alzheimer's disease and type 2 diabetes using transgenic mice on a high-fat diet.
  • The research showed that EGCG improved insulin sensitivity, cognitive function, and reduced brain amyloid levels while also decreasing neuroinflammation markers.
  • The findings suggest that EGCG could serve as a potential treatment to prevent cognitive decline and other pathological features associated with Alzheimer's disease and metabolic dysregulation.

Article Abstract

Epigallocatechin-3-gallate (EGCG), a catechin found in green tea, has been previously investigated for its neuroprotective effects in vitro and in vivo. In the present study, we aimed to evaluate its possible beneficial effects in a well-established preclinical mixed model of familial Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) based on the use of transgenic APPswe/PS1dE9 (APP/PS1) mice fed with a high fat diet (HFD). C57BL/6 wild-type (WT) and APP/PS1 mice were used in this study. APP/PS1 mice were fed with a palmitic acid-enriched HFD (APP/PS1 HFD) containing 45% of fat mainly from hydrogenated coconut oil. Intraperitoneal glucose tolerance tests (IP-GTT) and insulin tolerance tests (IP-ITT) were performed. Western blot analyses were performed to analyse protein expression, and water maze and novel object recognition test were done to evaluate the cognitive process. EGCG treatment improves peripheral parameters such as insulin sensitivity or liver insulin pathway signalling, as well as central memory deficits. It also markedly increased synaptic markers and cAMP response element binding (CREB) phosphorylation rates, as a consequence of a decrease in the unfolded protein response (UPR) activation through the reduction in the activation factor 4 (ATF4) levels and posterior downregulation of protein tyrosine phosphatase 1B (PTP1B). Moreover, EGCG significantly decreased brain amyloid β (Aβ) production and plaque burden by increasing the levels of α-secretase (ADAM10). Also, it led to a reduction in neuroinflammation, as suggested by the decrease in astrocyte reactivity and toll-like receptor 4 (TLR4) levels. Collectively, evidence suggests that chronic EGCG prevents distinct neuropathological AD-related hallmarks. This study also provides novel insights into the metabolic and neurobiological mechanisms of EGCG against cognitive loss through its effects on UPR function, suggesting that this compound may be a promising disease-modifying treatment for neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-019-01849-6DOI Listing

Publication Analysis

Top Keywords

app/ps1 mice
12
epigallocatechin-3-gallate egcg
8
unfolded protein
8
protein response
8
mice fed
8
tolerance tests
8
egcg
5
egcg improves
4
improves cognitive
4
cognitive deficits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!