The history of the development of glucose sensors goes hand-in-hand with the history of the discovery and the engineering of glucose-sensing enzymes. Glucose oxidase (GOx) has been used for glucose sensing since the development of the first electrochemical glucose sensor. The principle utilizing oxygen as the electron acceptor is designated as the first-generation electrochemical enzyme sensors. With increasing demand for hand-held and cost-effective devices for the "self-monitoring of blood glucose (SMBG)", second-generation electrochemical sensor strips employing electron mediators have become the most popular platform. To overcome the inherent drawback of GOx, namely, the use of oxygen as the electron acceptor, various glucose dehydrogenases (GDHs) have been utilized in second-generation principle-based sensors. Among the various enzymes employed in glucose sensors, GDHs harboring FAD as the redox cofactor, FADGDHs, especially those derived from fungi, fFADGDHs, are currently the most popular enzymes in the sensor strips of second-generation SMBG sensors. In addition, the third-generation principle, employing direct electron transfer (DET), is considered the most elegant approach and is ideal for use in electrochemical enzyme sensors. However, glucose oxidoreductases capable of DET are limited. One of the most prominent GDHs capable of DET is a bacteria-derived FADGDH complex (bFADGDH). bFADGDH has three distinct subunits; the FAD harboring the catalytic subunit, the small subunit, and the electron-transfer subunit, which makes bFADGDH capable of DET. In this review, we focused on the two representative glucose sensing enzymes, fFADGDHs and bFADGDHs, by presenting their discovery, sources, and protein and enzyme properties, and the current engineering strategies to improve their potential in sensor applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2019.107414DOI Listing

Publication Analysis

Top Keywords

glucose sensing
12
capable det
12
glucose
11
glucose dehydrogenases
8
discovery engineering
8
representative glucose
8
sensing enzymes
8
glucose sensors
8
oxygen electron
8
electron acceptor
8

Similar Publications

This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.

View Article and Find Full Text PDF

Taste Preference and Metabolic Rate of Trehalose in Chickens.

J Poult Sci

January 2025

Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.

Trehalose (Tre) is composed of two molecules of D-glucose joined by an α,α-1,1 glucosidic linkage. Because Tre is utilized by the gut microbiome and enhances gut immunity in chickens, it is used as a feed ingredient. However, taste preference and metabolic dynamics of Tre in chickens are not fully understood.

View Article and Find Full Text PDF

This study highlights the aqueous synthesis of CdTe/ZnS core/shell quantum dots (QDs) and their application as fluorescence sensors for detecting critical metabolites, including folic acid, glucose, and vitamin C, in real biological samples. The synthesized QDs exhibit excellent quantum efficiency, stability, and biocompatibility, enhanced by mercaptopropionic acid (MPA) ligands, enabling eco-friendly and accurate sensing. Detection limits of 0.

View Article and Find Full Text PDF

Due to their ease of synthesis and large specific surface area, Ni(OH) nanosheets have emerged as promising electrochemical sensing materials, attracting significant attention in recent years. Herein, a series of oxy-hydroxides based on Ni(OH) nanosheets, including NiO/Ni(OH)@NF and (MNi)O/Ni(OH)@NF (M = Co, Fe, or Cr), are successfully synthesized the electrochemical oxidation and incorporation strategies. Electrochemical tests demonstrate that these Ni(OH)-based oxy-hydroxides exhibit excellent electrochemical oxidation activity for glucose in alkaline electrolyte.

View Article and Find Full Text PDF

Nickel-based metal-organic frameworks, denoted as three-dimensional nickel trimesic acid frameworks (3D Ni-TMAF), are gaining significant attention for their application in nonenzymatic glucose sensing due to their unique properties. Ni-MOFs possess a high surface area, tunable pore structures, and excellent electrochemical activity, which makes them ideal for facilitating electron transfer and enhancing the catalytic oxidation of glucose. This research describes a new electrochemical enzyme-mimic glucose biosensor in biological solutions that utilizes 3D nanospheres Ni-TMAF created layer-by-layer on a highly porous nickel substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!