2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) induces mitochondrial dysfunction and related liver injury via eliciting miR-34a-5p-mediated mitophagy impairment.

Environ Pollut

School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China; College of Health Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China. Electronic address:

Published: March 2020

2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is associated with various adverse human health effects; however, the knowledge of its toxicity is still very limited. Mitochondrial injury has been observed in liver cells exposed to BDE-47 in vitro. Mitophagy impairment causes the accumulation of dysfunctional mitochondria, contributing to the pathological mechanisms of liver injury. The aim of this study was to investigate whether BDE-47 impairs mitophagy to trigger mitochondrial dysfunction-related liver injury and the underlying mechanisms. This study revealed that BDE-47 elicited mitochondrial dysfunction and related oxidative liver injury by impairing mitophagy. Moreover, our results showed that NAD insufficiency is responsible for BDE-47-mediated mitophagy defect and mitochondrial dysfunction in mouse livers, which was associated with suppression of Sirt3/FoxO3a/PINK1 signaling. Furthermore, our results indicated a potential role of miR-34a-5p in the hepatotoxicity of BDE-47. Mechanistically, BDE-47 dramatically upregulated miR-34a-5p expression in mouse livers. The data from AAV-sponge-mediated miR-34a-5p inhibition suggested that miR-34a-5p diminished NAD level by directly targeting NAMPT expression in BDE-47-treated mouse livers, which was confirmed by luciferase reporter assay. Consequently, miR-34a-5p markedly abated Sirt3/FoxO3a/PINK1 signaling-mediated mitophagy to promote mitochondrial dysfunction in BDE-47-treated mouse livers. The present study provided in vivo evidence to reveal a potential mechanism for BDE-47-induced mitochondrial dysfunction and related liver injury and indicated that miR-34a-5p-mediated mitophagy impairment might be a therapeutic target for BDE-47 toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.113693DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
20
liver injury
20
mouse livers
16
mitophagy impairment
12
bde-47
8
ether bde-47
8
dysfunction liver
8
mir-34a-5p-mediated mitophagy
8
bde-47-treated mouse
8
mitochondrial
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!