Pumping effect of heterogeneous meniscus formed around spherical particle.

J Colloid Interface Sci

Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan. Electronic address:

Published: March 2020

Hypothesis: A disturbance such as a microparticle on the pathway of a spreading droplet has shown the tremendous ability to accelerate locally the motion of the macroscopic contact line (Mu et al., 2017). Although this ability has been linked to the particle-liquid interaction, the physical mechanisms behind it are still poorly understood despite its academic interest and the scope of numerous industrial applications in need of fast wetting.

Experiments: In order to better understand the mechanisms behind the particle-liquid interaction, we numerically investigate the pressure and velocity fields in the liquid film. The results are compared to experiments assessing the temporal shape variation of the liquid-film meniscus from which pressure difference around the particle is evaluated.

Findings: The particle-induced acceleration of the film front depends both on the shape of the meniscus that forms around the particle foot and the liquid "reservoir" in the film that can be pumped thanks to the presence of the particle. The study validates the presence of three stages of pressure difference between the upstream and downstream regions of the meniscus around the particle, which leads to the local acceleration/deceleration of the macroscopic contact line. We indicate that asymmetric meniscus around the particle foot produces a net pressure force driving liquid and accelerating the liquid-film front.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2019.12.005DOI Listing

Publication Analysis

Top Keywords

macroscopic contact
8
particle-liquid interaction
8
pressure difference
8
particle foot
8
meniscus particle
8
particle
6
meniscus
5
pumping heterogeneous
4
heterogeneous meniscus
4
meniscus formed
4

Similar Publications

Cestodes in Eurasian wolves () and domestic dogs () in Switzerland.

Int J Parasitol Parasites Wildl

April 2025

Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.

Eurasian wolves () and domestic dogs () are definitive hosts of numerous cestode species. While infections with adult stages in canids are usually subclinical, some species pose a zoonotic risk or cause infections in wildlife and livestock, resulting in disease and/or economic losses. This study aimed to determine the prevalence, species composition, and geographical distribution of cestode infections in dogs and free-ranging wolves in Switzerland.

View Article and Find Full Text PDF

Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.

View Article and Find Full Text PDF

Model of drop infiltration into a thin amphiphilic porous medium.

J Colloid Interface Sci

January 2025

UMR1114 EMMAH INRAE-AU, 228, Route de L'Aérodrome, Avignon, F84000, France. Electronic address:

Hypothesis: Water drop infiltration into a thin amphiphilic porous medium is influenced by wettability. Due to the reorganization of amphiphilic matter in contact with water, polar interaction changes the wettability in the bulk porous medium and at the liquid/porous substrate interface. To model out of equilibrium water transfer, we propose a thermodynamics approach derived from Onsager's principle.

View Article and Find Full Text PDF

Cellular Function of a Biomolecular Condensate Is Determined by Its Ultrastructure.

bioRxiv

December 2024

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.

Biomolecular condensates play key roles in the spatiotemporal regulation of cellular processes. Yet, the relationship between atomic features and condensate function remains poorly understood. We studied this relationship using the polar organizing protein Z (PopZ) as a model system, revealing how its material properties and cellular function depend on its ultrastructure.

View Article and Find Full Text PDF

Bridged emulsion gels from polymer-nanoparticle enabling large-amount biomedical encapsulation and functionalization.

Nat Commun

December 2024

Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.

Large-amount encapsulation and subsequent expressing are common characteristics for many biomedical applications, such as cosmetic creams and medical ointments. Emulsion gels can accomplish that, but often undergo exclusive, complex, multiple synthesis steps, showing extremely laborious and non-universal. The method here is simple via precisely interfacial engineering in homogenizing a nanoparticle aqueous dispersion and a polymer oil solution, gaining interfacial 45° three-phase-contact-angle for the nanoparticle that can bridge across oil emulsions' interfaces and ultimately form interconnected macroscopic networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!