Phospholipase A2 (PLA2) is the main constituent of snake venom. PLA2 enzymes catalyze the Ca dependent hydrolysis of 2-acyl ester bonds of 3-sn-phospholipids, releasing fatty acids and lysophospholipids. Inside the body of the victim, PLA2 from snake venom induces either direct or indirect pathophysiological effects, including anticoagulant, inflammatory, neurotoxic, cardiotoxic, edematogenic, and myotoxic activities. Therefore, there is a need to find the potential inhibitors against PLA2 responsible for snakebite. In this study, we employed in silico and in vitro methods to identify the potential inhibitor against PLA2. Virtual screening and molecular docking studies were performed to find potent inhibitor against PLA2 using Traditional Chinese Medicine Database (TCM). Based on these studies, Scutellarin (TCM3290) was selected and calculated by density functional theory calculation at B3LYP/6-31G** level to explore the stereo-electronic features of the molecule. Further, molecular docking and DFT of Minocycline was carried out. Quantum polarized ligand docking was performed to optimize the geometry of the protein-ligand complexes. The protein-ligand complexes were subjected to molecular dynamics simulation and binding free energy calculations. The residence time of a protein-ligand complex is a critical parameter affecting natural influences in vitro. It is nonetheless a challenging errand to expect, regardless of the accessibility of incredible PC assets and a large variety of computing procedures. In this metadynamics situation, we used the conformational flooding technique to deal with rank inhibitors constructions. The systematic free energy perturbation (FEP) protocol and calculate the energy of both complexes. Finally, the selected compound of TCM3290 was studied in vitro analysis such as inhibition of PLA2 activity, hyaluronidase activity and fibrinogenolytic activity. The TCM3290 had a more binding affinity compare to Minocycline, and interacted with the key residues of TYR63 and GLY31. DFT represented the highest HOMO and LUMO energy of 0.15146 eV. MD simulation with 100 ns proved that an inhibitor binding mode is more stable inside the binding site of PLA2. In vitro analysis shows that TCM3290 significantly neutralized by PLA2. The above observations confirmed that Scutellarin (TCM3290) had a potent snake venom neutralizing capacity and could hypothetically be used for therapeutic drives of snakebite envenomation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.091 | DOI Listing |
Scientists are turning to AI to make antivenoms cheaper, faster, and more effective.
View Article and Find Full Text PDFNature
January 2025
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil; Center of Toxins, Cell Signaling and Immune Response (CeTICS), CEPID, FAPESP, Brazil. Electronic address:
The complement system plays a crucial role in various pathophysiological conditions, including snake envenomation. In this study, we investigated the effects of Bitis arietans venom on the complement system using an ex vivo human whole blood model. Our findings demonstrate that B.
View Article and Find Full Text PDFBiochimie
January 2025
LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. Electronic address:
This study focuses on the quaternary structure of the viper-secreted phospholipase A (PLA), a central toxin in viper envenomation. PLA enzymes catalyse the hydrolysis of the sn-2 ester bond of membrane phospholipids. Small-molecule inhibitors that act as snakebite antidotes, such as varespladib, are currently in clinical trials.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Fundação de Medicina Tropical - Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Nilton Lins, Manaus, AM, Brazil. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!