Low resolution coarse-grained (CG) models are widely adopted for investigating phenomena that cannot be effectively simulated with all-atom (AA) models. Since the development of the many-body dissipative particle dynamics method, CG models have increasingly supplemented conventional pair potentials with one-body potentials of the local density (LD) around each site. These LD potentials appear to significantly extend the transferability of CG models, while also enabling more accurate descriptions of thermodynamic properties, interfacial phenomena, and many-body correlations. In this work, we systematically examine the properties of LD potentials. We first derive and numerically demonstrate a nontrivial transformation of pair and LD potentials that leaves the total forces and equilibrium distribution invariant. Consequently, the pair and LD potentials determined via bottom-up methods are not unique. We then investigate the sensitivity of CG models for glycerol to the weighting function employed for defining the local density. We employ the multiscale coarse-graining (MS-CG) method to simultaneously parameterize both pair and LD potentials. When employing a short-ranged Lucy function that defines the local density from the first solvation shell, the MS-CG model accurately reproduces the pair structure, pressure-density equation of state, and liquid-vapor interfacial profile of the AA model. The accuracy of the model generally decreases as the range of the Lucy function increases further. The MS-CG model provides similar accuracy when a smoothed Heaviside function is employed to define the local density from the first solvation shell. However, the model performs less well when this function acts on either longer or shorter length scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5128665 | DOI Listing |
Sci Rep
January 2025
Westchase Software, Houston, TX, 77063, USA.
It is well known that the sedimentary rock record is both incomplete and biased by spatially highly variable rates of sedimentation. Without absolute age constraints of sufficient resolution, the temporal correlation of spatially disjunct records is therefore problematic and uncertain, but these effects have rarely been analysed quantitatively using signal processing methods. Here we use a computational process model to illustrate and analyse how spatial and temporal geochemical records can be biased by the inherent, heterogenous processes of marine sedimentation and preservation.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
For the purpose of this study, four natural rock samples-namely, diorite, granodiorite, tonalite, and granite-are being investigated about their radiation attenuation. The elemental composition of the rocks was obtained through Energy dispersive X-ray spectroscopy (EDX) which examines the microstructural and localized area elemental analyses of the four rock samples. A Monte Carlo simulation (MCNP) was used to determine and evaluate the investigated samples.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China.
The transformation and risk assessment of flavonoids triggered by free radicals deserve extensive attention. In this work, the degradation mechanisms, kinetics, and ecotoxicity of kaempferol and quercetin mediated by ∙OH, ∙OCH, ∙OOH, and O in gaseous and aqueous environments were investigated using cell experiments and quantum chemical calculations. Three radical scavenging mechanisms, including hydrogen atom transfer (HAT), radical adduct formation (RAF) and single electron transfer (SET) were discussed.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore.
Osteoporosis, characterized by reduced bone mineral density and increased fracture risk, poses a significant health challenge, particularly for aging populations. Systemic treatments often lead to adverse side effects, emphasizing the need for localized solutions. This study introduces a 3D-printed polycaprolactone (PCL) scaffold embedded with strontium-substituted mesoporous bioactive glass nanoparticles (Sr-MBGNPs) and icariin (ICN) for the targeted regeneration of osteoporotic bone.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Helsinki FIN-00014, Finland.
We have calculated the magnetically induced current density (MICD) susceptibility at the all-electron density functional theory level for a series of coronoid molecules of increasing size and compared the MICD susceptibilities with those calculated using the pseudo-π (PP) model. The molecules sustain global diatropic magnetically induced ring currents (MIRCs), whereas paratropic MICD vortices mainly appear inside the benzene rings. The computationally cheaper PP calculations were also employed on circum[]coronene molecules showing that the MICD pattern continues to alternate for odd and even when increasing the size of the molecule.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!