Dielectric response function for colloidal semiconductor quantum dots.

J Chem Phys

Institut für Physikalische Chemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany.

Published: December 2019

We calculate the optical properties of InP and CdSe colloidal quantum dots (QDs) within the framework of the atomic effective pseudopotential approach and the screened configuration interaction theory. We obtain an excellent agreement with experiment with our microscopic and space-dependent screening function where the dielectric constant varies in real space with a sharp transition (width of ≈0.18 nm) from the QD material high-frequency bulk value inside the QD to the solvent or passivant high-frequency value outside. We obtain a reasonable agreement (with deviations less than 140 meV) for a computationally less demanding solvent-independent screening using the full high-frequency bulk screening, in contrast to the more commonly used reduced QD radius-dependent screening constant. We show theoretically that for QDs passivated with long-chained organic molecules, the influence of the solvent on the optical gap is in the range of 10 meV, while QDs passivated with short ligands can experience shifts in the order of 100 meV. Experiments on CdSe QDs passivated with octadecylphosphonic acid (ODPA, long-chained ligand) in two different solvents (toluene and chloroform) confirm the bandgap dependence. While the optical gap is weakly affected by the environment, the quasiparticle gap and the exciton binding energy show a strong environmental dependence. Finally, we show that the optical bandgap does not depend significantly on the crystal structure (wurtzite or zincblende) or the morphological details (faceted or "spherical" shape).

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5128334DOI Listing

Publication Analysis

Top Keywords

qds passivated
12
quantum dots
8
high-frequency bulk
8
optical gap
8
dielectric response
4
response function
4
function colloidal
4
colloidal semiconductor
4
semiconductor quantum
4
dots calculate
4

Similar Publications

Performance enhancement of InSnZnO thin-film transistors by modifying the dielectric-semiconductor interface with colloidal quantum dots.

Nanoscale Adv

December 2024

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China

Thin film transistors (TFTs) with InSnZnO (ITZO) and AlO as the semiconductor and dielectric layers, respectively, were investigated, aiming to elevate the device performance. Chemically synthesized CuInS/ZnS core/shell colloidal quantum dots (QDs) were used to passivate the semiconductor/dielectric interface. Compared with the pristine device, the device with the integrated QDs demonstrates remarkably improved electrical performance, including a higher electron mobility and a lower leakage current.

View Article and Find Full Text PDF

The development of quantum dot light-emitting diodes (QLEDs) represents a promising advancement in next-generation display technology. However, there are challenges, especially in achieving efficient hole injection, maintaining charge balance, and replacing low-stability organic materials such as PEDOT:PSS. To address these issues, in this study, self-assembled monolayers (SAMs) were employed to modify the surface properties of NiO, a hole injection material, within the structure of ITO/HIL/TFB/QDs/ZnMgO/Al QLEDs.

View Article and Find Full Text PDF

The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.

View Article and Find Full Text PDF

Inorganic ligand capped quantum dot light-emitting diodes: status and perspective.

Nanotechnology

January 2025

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

Quantum dots (QDs) have shown great application potential in a variety of optoelectronic devices due to their unique optoelectronic properties, especially playing a key role in the development of quantum dot light-emitting diodes (QLEDs). Inorganic ligands, including metal or non-metal chalcogenides, oxoanions, halides, and metal cations, play crucial roles in the synthesis, stabilization, and functionalization of QDs. Compared to long-chain organic ligands, inorganic ligands are shorter and possess higher electron mobility, which facilitates their application in high-performance QLEDs.

View Article and Find Full Text PDF

With many fascinating characteristics, such as color-tunability, narrow-band emission, and low-cost solution processability, all-inorganic lead halide perovskite quantum dots (QDs) have attracted keen attention for electroluminescent light-emitting diodes (QLEDs) and display applications. However, the performance of perovskite QLED devices is intrinsically limited by the inefficient electrical carrier transport capacity. Herein, one facile but effective method is proposed to enhance the perovskite QLED performance by incorporating a short carbon chain ligand of 2-phenethylammonium bromide (PEABr) to passivate the CsPbBr QD surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!