Hypothesis: Newtonian liquids, usually used as base oil lubricants, exhibit low viscosity under extreme thermal conditions, needed for the functioning of wind turbines. This is directly affecting the colloidal stability and the tribological properties of the formulations containing additives, such as MoS. Here, it was hypothesized that the surface hydrophobization of MoS particles will allow for an increased colloidal stability of the resulting formulations, for temperatures as high as 80 °C.
Experiments: The antifriction properties and the thermal stability of the designed formulations were determined on submicron MoS particles dispersed in poly-α-olefins (PAO) base oils of different dynamic viscosities (from 32 to 1650 mPa·s at 25 °C). The submicron particles of MoS (300-500 nm in diameter) were synthesised by a simple one-pot solvothermal method under mild conditions. The resulting particles were hydrophobized in situ in PAO base oils using alkyltrichlorosilane grafting agents with two chain lengths (C8 and C18).
Findings: The covalent grafting of alkylsilanes through Mo-O-Si bonds was confirmed by DFT calculations and FT-IR measurements. Turbiscan optical analysis revealed that thermal and colloidal stabilities can be significantly improved depending on oil viscosity and chain length of the grafting agent. The formulations in the PAO65 oil remained highly stable (TSI < 1), even at 80 °C. Herein, we demonstrate the impact of hydrophobization degree on the tribological properties of the lubricants, which, importantly, could reach ultra-low friction coefficients, less than 0.02.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2019.12.007 | DOI Listing |
Langmuir
January 2025
Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
Colloidal gels, ubiquitous in industrial applications, can undergo reversible solid-to-liquid transitions. Recent work demonstrates that adding surface roughness to primary particles enhances the toughness and influences the self-healing properties of colloidal gels. In the present work, we first use colloidal probe atomic force microscopy (CP-AFM) to assess the quantitative changes in adhesive and frictional forces between thermoresponsive particles as a function of their roughness.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India.
The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe is one such extremely promising solar energy material.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
Hydrogel drug-delivery system that can effectively load antibacterial drugs, realize the in-situ drug release in the microenvironment of wound infection to promote wound healing. In this study, a multifunctional hydrogel drug delivery system (HA@TA-Okra) was constructed through the integration of hyaluronic acid methacrylate (HAMA) matrix with tannic acid (TA) and okra extract. The composition and structural characteristics of HA@TA-Okra system and its unique advantages in the treatment of diverse wounds were systematically evaluated.
View Article and Find Full Text PDFDiscov Nano
January 2025
Nuclear and Energy Research Institute, IPEN, CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP05508-000, Brazil.
Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China. Electronic address:
The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!