Chronic Myeloid Leukemia (CML) is a myeloproliferative neoplasm primarily due to the presence of the BCR-ABL fusion gene that produces the constitutively active protein, BCR-ABL. Imatinib, a BCR-ABL-targeted drug, is a first-line drug for the treatment of CML. Resistance to imatinib occurs as a result of mutations in the BCR-ABL kinase domains. In this study, we evaluated S116836, a novel BCR-ABL inhibitor, for its anti-cancer efficacy in the wild-type (WT) and T315I mutant BCR-ABL. S116836 was efficacious in BaF3 cells with WT or T315I mutated BCR-ABL genotypes. S116836 inhibits the phosphorylation of BCR-ABL and its downstream signaling in BaF3/WT and BaF3/T315I cells. Mechanistically, S116836 arrests the cells in the G0/G1 phase of cell cycle, induces apoptosis, increases ROS production, and decreases GSH production in BaF3/WT and BaF3/T315I cells. Moreover, in mouse tumor xenografts, S116836 significantly inhibits the growth and volume of tumors expressing the WT or T315I mutant BCR-ABL without causing significant cardiotoxicity. Overall, our results indicate that S116836 significantly inhibits the imatinib-resistant T315I BCR-ABL mutation and could be a novel drug candidate for treating imatinib-resistant CML patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2019.11.040DOI Listing

Publication Analysis

Top Keywords

s116836 inhibits
12
bcr-abl
10
novel bcr-abl
8
chronic myeloid
8
myeloid leukemia
8
t315i mutant
8
mutant bcr-abl
8
baf3/wt baf3/t315i
8
baf3/t315i cells
8
s116836
6

Similar Publications

Preclinical development of a novel BCR-ABL T315I inhibitor against chronic myeloid leukemia.

Cancer Lett

March 2020

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA. Electronic address:

Chronic Myeloid Leukemia (CML) is a myeloproliferative neoplasm primarily due to the presence of the BCR-ABL fusion gene that produces the constitutively active protein, BCR-ABL. Imatinib, a BCR-ABL-targeted drug, is a first-line drug for the treatment of CML. Resistance to imatinib occurs as a result of mutations in the BCR-ABL kinase domains.

View Article and Find Full Text PDF

Antitumor activity of S116836, a novel tyrosine kinase inhibitor, against imatinib-resistant FIP1L1-PDGFRα-expressing cells.

Oncotarget

November 2014

Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.

The FIP1-like-1-platelet-derived growth factor receptor alpha (FIP1L1-PDGFRα) fusion oncogene is the driver factor in a subset of patients with hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL). Most FIP1L1-PDGFRα-positive patients respond well to the tyrosine kinase inhibitor (TKI) imatinib. Resistance to imatinib in HES/CEL has been described mainly due to the T674I mutation in FIP1L1-PDGFRα, which is homologous to the imatinib-resistant T315I mutation in BCR-ABL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!