Background & Aims: Mucin 13 (MUC13) is reportedly overexpressed in human malignancies. However, the clinicopathological and biological significance of MUC13 in human intrahepatic cholangiocarcinoma (iCCA) remain unclear. The aim of this study was to define the role of MUC13 in the progression of iCCA.

Methods: Expression levels of MUC13 in human iCCA samples were evaluated by immunohistochemistry, western blot, and real-time PCR. In vitro and in vivo experiments were used to assess the effect of MUC13 on iCCA cell growth and metastasis. Crosstalk between MUC13 and EGFR/PI3K/AKT signaling was analyzed by molecular methods. The upstream regulatory effects of MUC13 were evaluated by Luciferase and DNA methylation assays.

Results: MUC13 was overexpressed in human iCCA specimens and iCCA cells. MUC13 overexpression positively correlated with clinicopathological characteristics of iCCA, such as vascular invasion and lymph node metastasis, and was independently associated with poor survival. Results from loss-of-function and gain-of-function experiments suggested that knockdown of MUC13 attenuated, while overexpression of MUC13 enhanced, the proliferation, motility, and invasiveness of iCCA cells in vitro and in vivo. Mechanistically, we found that the phosphatidylinositol 3-kinase-AKT signal pathway and its downstream effectors, such as tissue inhibitor of metalloproteinases 1 and matrix metallopeptidase 9, were required for MUC13-mediated tumor metastasis of iCCA. MUC13 interacted with epidermal growth factor receptor (EGFR) and subsequently activated the EGFR/PI3K/AKT signaling pathway by promoting EGFR dimerization and preventing EGFR internalization. We also found that MUC13 was directly regulated by miR-212-3p, whose downregulation was related to aberrant CpG hypermethylation in the promoter area.

Conclusions: These findings suggest that aberrant hypermethylation-induced downregulation of miR-212-3p results in overexpression of MUC13 in iCCA, leading to metastasis via activation of the EGFR/PI3K/AKT signaling pathway.

Lay Summary: Mucin 13 overexpression has been implicated in the development of malignancies, although its role in intrahepatic cholangiocarcinoma has not been studied. Herein, we show that mucin 13 plays a critical role in intrahepatic cholangiocarcinoma. Mucin 13 could have therapeutic value both as a prognostic marker and as a treatment target.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2019.11.021DOI Listing

Publication Analysis

Top Keywords

intrahepatic cholangiocarcinoma
16
muc13
15
egfr/pi3k/akt signaling
12
icca
9
overexpressed human
8
muc13 human
8
human icca
8
in vitro in vivo
8
muc13 icca
8
icca cells
8

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

Biliary drainage is then one of the necessary procedures to help patients suffering from icterus to reduce serum bilirubin levels and relieve symptoms. The aim of this study was identifying risk factors for survival in patients with cholangiocarcinoma (CCA) treated with percutaneous transhepatic biliary drainage (PTBD) and to develop a simple scoring system predicting survival from PTBD insertion. This single-centre retrospective study included 175 consecutive patients undergoing PTBD for extrahepatic CCA (perihilar and distal).

View Article and Find Full Text PDF

Background: We investigated the rational extent of regional lymphadenectomy and evaluated the prognostic impact of number-based regional nodal classification in patients with distal cholangiocarcinoma.

Methods: This study included 191 patients with distal cholangiocarcinoma who underwent pancreaticoduodenectomy. The nos.

View Article and Find Full Text PDF

Nanosize Non-Viral Gene Therapy Reverses Senescence Reprograming Driven by PBRM1 Deficiency to Suppress iCCA Progression.

Adv Sci (Weinh)

January 2025

Department of Hepatic Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.

Polybromo-1 (PBRM1) serves as a crucial regulator of gene transcription in various tumors, including intrahepatic cholangiocarcinoma (iCCA). However, the exact role of PBRM1 in iCCA and the mechanism by which it regulates downstream target genes remain unclear. This research has revealed that PBRM1 is significantly downregulated in iCCA tissues, and this reduced expression is linked to aggressive clinicopathological features and a poor prognosis.

View Article and Find Full Text PDF

DNA damage response mutations enhance the antitumor efficacy of ATR and PARP inhibitors in cholangiocarcinoma cell lines.

Oncol Lett

March 2025

Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand.

Cholangiocarcinoma (CCA) is a biliary tract carcinoma that is challenging to treat due to its heterogeneity and limited treatment options. Genetic alterations in DNA damage response (DDR) pathways and homologous recombination (HR) defects are common in CCA. This has prompted interest in the use of ataxia telangiectasia and Rad3-related protein (ATR) and poly(ADP-ribose) polymerase (PARP) inhibitors to treat CCA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!