Clueless forms dynamic, insulin-responsive bliss particles sensitive to stress.

Dev Biol

Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA. Electronic address:

Published: March 2020

Drosophila Clueless (Clu) is a ribonucleoprotein that directly affects mitochondrial function. Loss of clu causes mitochondrial damage, and Clu associates with proteins on the mitochondrial outer membrane. Clu's subcellular pattern is diffuse throughout the cytoplasm, but Clu also forms large mitochondria-associated particles. Clu particles are reminiscent of ribonucleoprotein particles such as stress granules and processing bodies. Ribonucleoprotein particles play critical roles in the cell by regulating mRNAs spatially and temporally. Here, we show that Clu particles are unique, highly dynamic and rapidly disperse in response to stress in contrast to processing bodies and autophagosomes. In addition, Clu particle formation is dependent on diet as ovaries from starved females no longer contain Clu particles, and insulin signaling is necessary and sufficient for Clu particle formation. Oxidative stress also disperses particles. Since Clu particles are only present under optimal conditions, we have termed them "bliss particles". We also demonstrate that many aspects of Clu function are conserved in the yeast homolog Clu1p. These observations identify Clu particles as stress-sensitive cytoplasmic particles whose absence corresponds with altered cell stress and mitochondrial localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080587PMC
http://dx.doi.org/10.1016/j.ydbio.2019.12.004DOI Listing

Publication Analysis

Top Keywords

clu particles
20
clu
12
particles
11
particles clu
8
ribonucleoprotein particles
8
processing bodies
8
clu particle
8
particle formation
8
stress
5
clueless forms
4

Similar Publications

The impact of nutritional modification to increase functional polyunsaturated fatty acids (PUFA), such as n-3 and n-6 fatty acids (FA) or conjugated linoleic acid (CLA), on milk proteome profile during early lactation remains largely unknown. We used an untargeted proteomics approach to investigate the impact of lactation day and PUFA supplementation on the proteome signature in skimmed milk over the course of early lactation. Sixteen Holstein dairy cows received abomasal infusion of saturated FA (CTRL) or a mixture of essential FA and CLA (EFA + CLA group) from - 63 to + 63 days relative to parturition.

View Article and Find Full Text PDF

The cytoplasm is populated with many ribonucleoprotein (RNP) particles that post-transcriptionally regulate mRNAs. These membraneless organelles assemble and disassemble in response to stress, performing functions such as sequestering stalled translation pre-initiation complexes or mRNA storage, repression and decay. Clueless (Clu) is a conserved multi-domain ribonucleoprotein essential for mitochondrial function that forms dynamic particles within the cytoplasm.

View Article and Find Full Text PDF

Chronic lower back pain caused by intervertebral disc degeneration and osteoarthritis (OA) are highly prevalent chronic diseases. Although pain management and surgery can alleviate symptoms, no disease-modifying treatments are available. mRNA delivery could halt inflammation and degeneration and induce regeneration by overexpressing anti-inflammatory cytokines or growth factors involved in cartilage regeneration.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) contain a variety of biomolecules and provide information about the cells that produce them. EVs from cancer cells found in urine can be used as biomarkers to detect cancer, enabling early diagnosis and treatment. The potential of alpha-2-macroglobulin (A2M) and clusterin (CLU) as novel diagnostic urinary EV (uEV) biomarkers for bladder cancer (BC) was demonstrated previously.

View Article and Find Full Text PDF

SARS-CoV-2, the causal agent of COVID-19, is a new coronavirus that has rapidly spread worldwide and significantly impacted human health by causing a severe acute respiratory syndrome boosted by a pulmonary hyperinflammatory response. Previous data from our lab showed that the newly excysted juveniles of the helminth parasite (FhNEJ) modulate molecular routes within host cells related to vesicle-mediated transport and components of the innate immune response, which could potentially be relevant during viral infections. Therefore, the aim of the present study was to determine whether FhNEJ-derived molecules influence SARS-CoV-2 infection efficiency in Vero cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!