This study aimed to investigate the contamination of drinking water sources with potentially toxic metals (PTMs) together with some hydrochemical characteristics in the highly populated industrial zone of Pakistan. For this purpose, drinking (n = 40) and surface (n = 20) water samples were collected and analyzed for PTM using graphite furnace atomic absorption spectrophotometer (GFAAS, PerkinElmer-700, USA). The metals, including cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), and zinc (Zn), showed significantly (p = 0.05) higher concentrations than their respective limits set by the World Health Organization (WHO 2011) in drinking water. The chronic daily intake (CDI) and human hazard quotient (HQ) were also evaluated. The highest daily intake through drinking water consumption was found for Ni (4.3 μg/kg/day), while lowest for Cd (0.25 μg/kg/day). The highest hazard quotient values were found for Cd (0.33) and Ni (0.29) that could be attributed to industrial wastewater discharge. Higher CDI and HQ values of Ni and Cd may cause chronic human health problems. According to the Chadha Piper diagram, the hydrochemical facies distribution indicated that water trend in the study area followed an order such as follows: Ca-Mg-Cl < Na-Cl < Ca-HCO < Na-HCO. Statistical analysis using one-way ANOVA, correlation analysis, and principal component analysis (PCA) revealed that the elevated levels of PTM were attributed to industrial wastewater discharge. This study provides baseline information for policy makers and the effective management of water in populated industrialized zone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-07219-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!