Radiohybrid PSMA (rhPSMA) ligands, a new class of theranostic prostate-specific membrane antigen (PSMA)-targeting agents, feature fast F synthesis and utility for labeling with radiometals. Here, we assessed the biodistribution and image quality of F-rhPSMA-7 to determine the best imaging time point for patients with prostate cancer. In total, 202 prostate cancer patients who underwent a clinically indicated F-rhPSMA-7 PET/CT were retrospectively analyzed, and 12 groups based on the administered activity and uptake time of PET scanning were created: 3 administered activities (low, 222-296 MBq; moderate, 297-370 MBq; and high, 371-444 MBq) and 4 uptake time points (short, 50-70 min; intermediate, 71-90 min; long, 91-110 min; and extra long, ≥111 min). For quantitative analyses, SUV and organ- or tumor-to-background ratio were determined for background, healthy organs, and 3 representative tumor lesions. Qualitative analyses assessed overall image quality, nonspecific blood-pool activity, and background uptake in bone or marrow using 3- or 4-point scales. In quantitative analyses, SUV showed a significant decrease in the blood pool and lungs and an increase in the kidneys, bladder, and bones as the uptake time increased. SUV showed a trend to increase in the blood pool and bones as the administered activity increased. However, no significant differences were found in 377 tumor lesions with respect to the administered activity or uptake time. In qualitative analyses, the overall image quality was stable along with the uptake time, but the proportion rated to have good image quality decreased as the administered activity increased. All other qualitative image parameters showed no significant differences for the administered activities, but they showed significant trends with increasing uptake time: less nonspecific blood activity, more frequent background uptake in the bone marrow, and increased negative impact on clinical decision making. The biodistribution of F-rhPSMA-7 was similar to that of established PSMA ligands, and tumor uptake of F-rhPSMA-7 was stable across the administered activities and uptake times. An early imaging time point (50-70 min) is recommended for F-rhPSMA-7 PET/CT to achieve the highest overall image quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198378 | PMC |
http://dx.doi.org/10.2967/jnumed.119.234609 | DOI Listing |
ACS Nano
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China.
Mitochondrial quality control is paramount for cellular development, with mitochondrial electron flow (Mito-EF) playing a central role in maintaining mitochondrial homeostasis. However, unlike visible protein entities, which can be monitored through chemical biotechnology, regulating mitochondrial quality control by invisible entities such as Mito-EF has remained elusive. Here, a Mito-EF tracker (Mito-EFT) with a four-pronged probe design is presented to elucidate the dynamic mechanisms of Mito-EF's involvement in mitochondrial quality control.
View Article and Find Full Text PDFActa Orthop
January 2025
Helsinki New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
Spondylolysis is defined as a defect or elongation in the pars interarticularis of the lumbar spine, either unilateral or bilateral. Growing children with bilateral spondylolysis may develop spondylolisthesis, i.e.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (N.M., A.I., A.L., L.B., T.D., D. Kravchenko, D. Kuetting, C.C.P., J.A.L.); Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany (N.M., A.I., L.B., D. Kravchenko, D. Kuetting, J.A.L.); Philips Healthcare, Hamburg, Germany (C.K.); Philips Medical Systems, Eindhoven, the Netherlands (A.H.-M.); and Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany (C.Y.).
Objectives: Impaired image quality and long scan times frequently occur in respiratory-triggered sequences in liver magnetic resonance imaging (MRI). We evaluated the impact of an in-bore active breathing guidance (BG) application on image quality and scan time of respiratory-triggered T2-weighted (T2) and diffusion-weighted imaging (DWI) by comparing sequences with standard triggering (T2S and DWIS) and with BG (T2BG and DWIBG).
Materials And Methods: In this prospective study, random patients with clinical indications for liver MRI underwent 3 T MRI with standard and BG acquisitions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!