Identification and Characterization of a New Carboxylesterase 2 Isozyme, mfCES2C, in the Small Intestine of Cynomolgus Monkeys.

Drug Metab Dispos

Graduate School of Pharmaceutical Sciences (K.O., Y.I., M.T., K.M., T.I.) and Headquarters for Admissions and Education (K.O.), Kumamoto University, Kumamoto, Japan; Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan (Y.I.); Daiichi Sankyo RD Novare Co., Ltd., Edogawa, Tokyo, Japan (A.K., N.W., K.K.); and Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan (Y.U.)

Published: March 2020

In contrast to a single human carboxylesterase 2 (CES2) isozyme (hCE2), three CES2 genes have been identified in cynomolgus monkeys: , , and Although mfCES2A protein is expressed in several organs, is a pseudogene and the phenotype of the gene has not yet been clarified in tissues. In previous studies, we detected an unidentified esterase in the region of CES2 mobility upon nondenaturing PAGE analysis of monkey intestinal microsomes, which showed immunoreactivity for anti-mfCES2A antibody. The aim of the present study was to identify this unidentified esterase from monkey small intestine. The esterase was separated on nondenaturing PAGE gel and digested in-gel with trypsin. The amino acid sequences of fragmented peptides were analyzed by tandem mass spectrometry. The unidentified esterase was shown to be identical to mfCES2C (XP_015298642.1, predicted from the genome sequence data). mfCES2C consists of 559 amino acid residues and shows approximately 90% homology with mfCES2A (561 amino acid residues). In contrast to the ubiquitous expression of mfCES2A, mfCES2C is only expressed in the small intestine, kidney, and skin. The hydrolytic properties of recombinant mfCES2C, expressed in HEK293 cells, with respect to -nitrophenyl derivatives, 4-methylumbelliferyl acetate, and irinotecan were similar to those of recombinant mfCES2A. However, mfCES2C showed a hydrolase activity for --valeryl propranolol higher than mfCES2A. It is concluded that the previously unidentified monkey intestinal CES2 is mfCES2C, which shows different hydrolytic properties to mfCES2A, depending on the substrate. SIGNIFICANCE STATEMENT: In the present research, we determined that mfCES2C, a novel monkey CES2 isozyme, is expressed in the small intestine and kidney of the cynomolgus monkey. Interestingly, mfCES2C showed a relatively wide substrate specificity for ester-containing compounds. These findings may, in early stages of drug development, support the use of -to- extrapolation for the intestinal hydrolysis of ester drugs in the cynomolgus monkey.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.119.089011DOI Listing

Publication Analysis

Top Keywords

small intestine
16
unidentified esterase
12
amino acid
12
mfces2c
9
cynomolgus monkeys
8
ces2 isozyme
8
monkey intestinal
8
acid residues
8
mfces2a mfces2c
8
mfces2c expressed
8

Similar Publications

This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.

View Article and Find Full Text PDF

Development of Novel Oral Delivery Systems Using Additive Manufacturing Technologies to Overcome Biopharmaceutical Challenges for Future Targeted Drug Delivery.

Pharmaceutics

December 2024

Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany.

The development of targeted drug delivery systems for active pharmaceutical ingredients with narrow absorption windows is crucial for improving their bioavailability. This study proposes a novel 3D-printed expandable drug delivery system designed to precisely administer drugs to the upper small intestine, where absorption is most efficient. The aim was to design, prototype, and evaluate the system's functionality for organ retention and targeted drug release.

View Article and Find Full Text PDF

Background/objectives: Diet composition is important for health, especially during critical periods such as pre-gestation (P), gestation (G), or lactation (S), due to its potential impact not only on the mother but on the offspring. The Mediterranean diet includes many healthy foods rich in fiber and/or polyphenols, such as whole grains, fruits, vegetables, beans, and nuts. The present preclinical study assesses the impact of a diet rich in fiber and polyphenols (HFP diet) during one of those three periods (P, G, or S, three weeks each) on the rat gene expression of the small intestine obtained at the end of the lactation period.

View Article and Find Full Text PDF

Aromatase plays a crucial role in the conversion of androgens to oestrogens and is often overexpressed in hormone-dependent tumours, particularly breast cancer. [18F]BIBD-071, which has excellent binding affinity for aromatase and good pharmacokinetics, has potential for the diagnosis and treatment of aromatase-related diseases. The MCF-7 cell line, which is hormone receptor-positive (HR+), was used in the assessment of the novel [18F]-labelled radiotracer [18F]BIBD-071 via positron emission tomography (PET) imaging of an HR+ breast cancer xenograft model.

View Article and Find Full Text PDF

: Medullary carcinoma of the small intestine is an exceptionally rare subtype of gastrointestinal cancer, characterized by its solid growth pattern and lack of glandular structures, which complicate timely diagnosis. During the COVID-19 pandemic, diagnostic delays for rare cancers became increasingly common due to the prioritization of COVID-related cases and patient reluctance to seek medical attention. : We present the case of a 70-year-old male initially misdiagnosed with COVID-19, whose persistent symptoms led to the eventual discovery of medullary carcinoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!