A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Continental outflow of anthropogenic aerosols over Arabian Sea and Indian Ocean during wintertime: ICARB-2018 campaign. | LitMetric

Chemical characterisation of atmospheric aerosols over Arabian Sea (AS) and Indian Ocean (IO) have been carried out during the winter period (January to February 2018) as part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB-2018). Mass concentrations of organic carbon (OC), elemental carbon (EC), water soluble and insoluble OC (WSOC, WIOC), primary and secondary OC (POC, SOC), water-soluble inorganic ions and trace metals have been estimated with a view to identify and quantify the major anthropogenic pollutants affecting the oceanic environments. Aerosol mass loading was found to exhibit strong spatial heterogeneity (varying from 13 to 84 μg m), significantly modulated by the origin of air-mass trajectories. Chemical analysis of aerosols revealed the presence of an intense pollution plume over south-eastern coastal Arabian Sea, near to south-west Indian peninsula (extending from ~ 12°N to 0° at 75°E) with a strong latitudinal gradient (~3 μg m/deg. from north to south) dominated by anthropogenic species contributing as high as 73% (38% nss-SO, 24.2% carbonaceous aerosols (21% Organic Matter, 3.2% EC) and 10% NH). Anthropogenic signature over oceanic environment was also evident from the dominance and high enrichment of elements like Zn, Cu, Mn and Pb in trace metals. Long-range transport of air-masses originating from Indo Gangetic Plains and its outflow regions in Bay of Bengal, has been seen over Arabian Sea during winter, that imparted such strong anthropogenic signatures over this oceanic environment. Comparison with previous cruise studies conducted nearly two decades ago shows a more than two-fold increase in the concentration of nss-SO, over the continental outflow region in Arabian Sea.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.135214DOI Listing

Publication Analysis

Top Keywords

arabian sea
20
continental outflow
8
aerosols arabian
8
sea indian
8
indian ocean
8
trace metals
8
oceanic environment
8
anthropogenic
5
aerosols
5
arabian
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!