Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants found in water, soil, and air. Exposure to this family of chemicals presents a danger to human health, and as a result, it is imperative to design methods that are able to detect PAHs in the environment, thus improving the quality of drinking water and agricultural soils. This review presents emerging immunoassay techniques used for in situ detection of PAH in water samples and how they compare to common-place techniques. It will discuss their advantages and disadvantages and why it is required to find new solutions to analyze water samples. These techniques are effective in reducing detection times and complexity of measurements. Immunoassay methods presented here are able to provide in situ analysis of PAH concentrations in a water sample, which can be a great complement to existing laboratory techniques due to their real-time screening and portability for immunoassay techniques. The discussion shows in detail the most relevant state-of-the-art surface functionalization techniques used in the field of immunosensors, with the aim to improve PAH detection capabilities. Specifically, three surface functionalization techniques are key approaches to improve the detection of PAHs, namely, substrate surface reaction, layer-by-layer technique, and redox-active probes. These techniques have shown promising improvements in the detection of PAHs in water samples, since they show a wider linear range and high level of sensitivity compared to traditional PAH detection techniques. This review explores the various methods used in the detection of PAH in water environments. It provides extra knowledge to scientists on the possible solutions that can be used to save time and resources. The combination of the solutions presented here shows great promise in the development of portable solutions that will be able to analyze a sample in a matter of minutes on the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955691 | PMC |
http://dx.doi.org/10.3390/bios9040142 | DOI Listing |
Plant Dis
January 2025
USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;
Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India.
Face masks are strongly believed to be the best precaution to reduce the transmission of the SARS-CoV-2 virus, which resulted in an unprecedented surge in the production and use of personal respiratory protective equipment. Unfortunately, this surge led to improper disposal of used masks. This study aimed to assess the occurrence of microplastics (MPs) in used and unused surgical and cloth masks and N95 respirators.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
We employed machine learning (ML) techniques combined with potential-dependent photoelectrochemical impedance spectroscopy (pot-PEIS) to gain deeper insights into the charge transport mechanisms of hematite (α-FeO) photoanodes. By the Shapley Additive exPlanations (SHAP) analysis from the ML model constructed from a small data set (dozens of samples) of electrical parameters obtained from pot-PEIS and the PEC performance, we identified the dominant factors influencing the electron transport to the back contact in the bulk and hole transfer to a solution at the hematite/electrolyte interface. The results revealed that shallow defect states significantly enhance electron transport, while deep defect states impede it, and also one of the surface states enhances the hole transfer to the electrolyte solution.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
Phytoplankton are diverse photosynthetic organisms in estuarine ecosystems and sensitive indicators of environmental changes. This study employed Generalized Additive Model (GAM) to explore the impact of environmental variables on the abundance of six dominant phytoplankton species in the tropical Karanja estuary, India. Data were collected from five sampling stations between January 2022 and March 2023.
View Article and Find Full Text PDFAnal Chem
January 2025
Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!